Unsupervised Graph Learning with GraphSage

GraphScope provides the capability to process learning tasks. In this tutorial, we demonstrate how GraphScope trains a model with GraphSage.

The task is link prediction, which estimates the probability of links between nodes in a graph.

In this task, we use our implementation of GraphSAGE algorithm to build a model that predicts protein-protein links in the PPI dataset. In which every node represents a protein. The task can be treated as a unsupervised link prediction on a homogeneous link network.

In this task, GraphSage algorithm would compress both structural and attribute information in the graph into low-dimensional embedding vectors on each node. These embeddings can be further used to predict links between nodes.

This tutorial has following steps:

  • Launching the learning engine and attaching to loaded graph.
  • Defining train process with builtin GraphSage model and hyper-parameters
  • Training and evaluating
In [ ]:
# Install graphscope package if you are NOT in the Playground

!pip3 install graphscope
!pip3 uninstall -y importlib_metadata  # Address an module conflict issue on colab.google. Remove this line if you are not on colab.
In [ ]:
# Import the graphscope module.

import graphscope

graphscope.set_option(show_log=False)  # enable logging
In [ ]:
# Load ppi dataset

from graphscope.dataset import load_ppi

graph = load_ppi()

Launch learning engine

Then, we need to define a feature list for training. The training feature list should be seleted from the vertex properties. In this case, we choose all the properties prefix with "feat-" as the training features.

With the featrue list, next we launch a learning engine with the graphlearn method of graphscope.

In this case, we specify the GCN training over "protein" nodes and "link" edges.

With gen_labels, we take protein nodes as training set.

In [ ]:
# define the features for learning
paper_features = []
for i in range(50):
    paper_features.append("feat-" + str(i))

# launch a learning engine.
lg = graphscope.graphlearn(
    nodes=[("protein", paper_features)],
    edges=[("protein", "link", "protein")],
        ("train", "protein", 100, (0, 100)),

We use the builtin GraphSage model to define the training process.You can find more detail about all the builtin learning models on Graph Learning Model

In the example, we use tensorflow as "NN" backend trainer.

In [ ]:
import numpy as np
import graphscope.learning
from graphscope.learning.examples import GraphSage
from graphscope.learning.graphlearn.python.model.tf.optimizer import get_tf_optimizer
from graphscope.learning.graphlearn.python.model.tf.trainer import LocalTFTrainer

# unsupervised GraphSage.

def train(config, graph):
    def model_fn():
        return GraphSage(

    trainer = LocalTFTrainer(
            config["learning_algo"], config["learning_rate"], config["weight_decay"]
    embs = trainer.get_node_embedding()
    np.save(config["emb_save_dir"], embs)

# define hyperparameters
config = {
    "class_num": 128,  # output dimension
    "features_num": 50,
    "batch_size": 512,
    "categorical_attrs_desc": "",
    "hidden_dim": 128,
    "in_drop_rate": 0.5,
    "hops_num": 2,
    "neighs_num": [5, 5],
    "full_graph_mode": False,
    "agg_type": "gcn",  # mean, sum
    "learning_algo": "adam",
    "learning_rate": 0.01,
    "weight_decay": 0.0005,
    "unsupervised": True,
    "epoch": 1,
    "emb_save_dir": "./id_emb",
    "node_type": "protein",
    "edge_type": "link",

Run training process

After define training process and hyperparameters,

Now we can start the traning process with learning engine "lg" and the hyperparameters configurations.

In [ ]:
train(config, lg)