from __future__ import print_function, division
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
import vcfnp
vcfnp.__version__
'2.0.0'
# VCF file name
filename = 'fixture/sample.vcf'
# load data from fixed fields (including INFO)
v = vcfnp.variants(filename, cache=True).view(np.recarray)
[vcfnp] 2015-01-23 11:22:59.232507 :: caching is enabled [vcfnp] 2015-01-23 11:22:59.232909 :: cache file available [vcfnp] 2015-01-23 11:22:59.233095 :: loading from cache file fixture/sample.vcf.vcfnp_cache/variants.npy
v.dtype
dtype([('CHROM', 'S12'), ('POS', '<i4'), ('ID', 'S12'), ('REF', 'S12'), ('ALT', 'S12'), ('QUAL', '<f4'), ('FILTER_q10', '?'), ('FILTER_s50', '?'), ('FILTER_PASS', '?'), ('num_alleles', 'u1'), ('is_snp', '?'), ('svlen', '<i4'), ('AA', 'S12'), ('AC', '<u2'), ('AF', '<f2'), ('AN', '<u2'), ('DB', '?'), ('DP', '<i4'), ('H2', '?'), ('NS', '<i4')])
v.CHROM
chararray([b'19', b'19', b'20', b'20', b'20', b'20', b'20', b'20', b'X'], dtype='|S12')
v.POS
array([ 111, 112, 14370, 17330, 1110696, 1230237, 1234567, 1235237, 10], dtype=int32)
v.DP
array([ 0, 0, 14, 11, 10, 13, 9, 0, 0], dtype=int32)
# print some simple variant metrics
print('found %s variants (%s SNPs)' % (v.size, np.count_nonzero(v.is_snp)))
print('QUAL mean (std): %s (%s)' % (np.mean(v.QUAL), np.std(v.QUAL)))
found 9 variants (5 SNPs) QUAL mean (std): 25.0667 (22.816)
# plot a histogram of variant depth
fig = plt.figure(1)
ax = fig.add_subplot(111)
ax.hist(v.DP)
ax.set_title('DP histogram')
ax.set_xlabel('DP');
# load data from sample columns
c = vcfnp.calldata_2d(filename, cache=True).view(np.recarray)
[vcfnp] 2015-01-23 11:22:59.494181 :: caching is enabled [vcfnp] 2015-01-23 11:22:59.494571 :: cache file available [vcfnp] 2015-01-23 11:22:59.494840 :: loading from cache file fixture/sample.vcf.vcfnp_cache/calldata_2d.npy
c.dtype
dtype([('is_called', '?'), ('is_phased', '?'), ('genotype', 'i1', (2,)), ('DP', '<u2'), ('GQ', 'u1'), ('GT', 'S3'), ('HQ', '<i4', (2,))])
c.genotype
array([[[ 0, 0], [ 0, 0], [ 0, 1]], [[ 0, 0], [ 0, 0], [ 0, 1]], [[ 0, 0], [ 1, 0], [ 1, 1]], [[ 0, 0], [ 0, 1], [ 0, 0]], [[ 1, 2], [ 2, 1], [ 2, 2]], [[ 0, 0], [ 0, 0], [ 0, 0]], [[ 0, 1], [ 0, 2], [-1, -1]], [[ 0, 0], [ 0, 0], [-1, -1]], [[ 0, -1], [ 0, 1], [ 0, 2]]], dtype=int8)
# print some simple genotype metrics
count_phased = np.count_nonzero(c.is_phased)
count_variant = np.count_nonzero(np.any(c.genotype > 0, axis=2))
count_missing = np.count_nonzero(~c.is_called)
print('calls (phased, variant, missing): %s (%s, %s, %s)'
% (c.flatten().size, count_phased, count_variant, count_missing))
calls (phased, variant, missing): 27 (14, 12, 2)
# plot a histogram of genotype quality
fig = plt.figure(2)
ax = fig.add_subplot(111)
ax.hist(c.GQ.flatten())
ax.set_title('GQ histogram')
ax.set_xlabel('GQ');