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Extreme Value Analysis (EVA)

 EVA s a statistical methodology for making inferences about
rare events (weather, finance, public health, materials, etc.)
* It is also very often referred to as Extreme Value Theory (EVT)

* Disambiguation:
* Extreme Value Theory (Analysis) has nothing to do with the Extreme Value
Theorem, from elementary calculus.

* This talk will be limited to:
e “Classical” EVA (mostly)
* Univariate, continuous probability distributions
e Maxima, since min(Xy, X5, ..., X)) = —max(—Xy, — X5, ..., —X;;)
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North Sea Flood of 1953

Losses:

* 1836 people killed

e 72,000 people evacuated

* 49,000 houses and farms flooded
e 201,000 cattle drowned

* 500 km coastal defenses destroyed
*  More than 200,000 ha flooded
Effect on Study of Extreme Events:

* Very little systematic statistical research w.r.t. height of the
dikes was done before 1953

* Flood of 1570 was mean-sea-level + 4m

* Gave EVA research a decisive push

) . . . Netherlands, during 1953 North Sea Flood.
* Needed height estimate well outside range of existing data Viewed from a U.S. Army helicopter.

* Van Dantzig report estimated p=1-10* quantile (one-in-ten-
thousand-year surge height) of mean-sea-level + 5.14m

Source: https://en.wikipedia.org/wiki/North_Sea_flood_of_1953

Source: [Embrechts 1997]
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Two Primary Approaches to EVA
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Divide the data into large/long blocks Use all data that exceeds a specific
and use the maximum/minimum threshold

value in each block

Source: PyExtremes User Guide
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A Very Brief Refresher

Probability Theory: PDFs, CDFs, CLT, etc.
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Continuous PDFs and CDFs

Standard Normal Distribution

Probability Density Function (PDF) Cumulative Distribution Function (CDF)

Probability Density Function ("norm") “norm" Cumulative Probability Distribution (black) with PDF (blue dashed)
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If X~N(u,0) and Z = —,

then Fy(x) =P(X<x)=P (Z < x%‘”) = (%) , i.e., a location-scale family*

TA location-scale family is a family of distributions formed by translation and scaling of a standard family member.
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Histograms and Empirical CDFs

Normalized Histogram & Kernel Density Estimate
of a Random Sample

Normalized Histogram (red) and Kernel Density Estimate (red dashed) of 100 RVs chosen from the 'norm’ dist. (blue) Empirical CDF (red) of the 100 rv's compared with the "norm" CDF (black))
10 1

Empirical CDF of the Same Random Sample
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* Histograms (normalized) are empirical estimates * The Empirical CDF is less susceptible to subjective
of PDFs, but their shape is sensitive to bin size choices,
* Kernel density estimates are another form of PDF e soitis often used for model checking, for
estimate, but their shape is sensitive to the type example, using Quantile-Quantile Plots.

of kernel used
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Parameter Estimation

X1, ., Xy~F(x;0)iidand f = F' * Confidence Intervals (Cl)
e Maximum Likelihood Est. (MLE) * Wald Cl ("classical” method)
* MLE: 8 ~ MVN,4(8,171(6))
Profile Likelihood Cl
 Likelihood ratio is asymptotically )(éf

Bootstrapping (resampling w/
Oth _h 4 replacement)
ther Methods Credible Interval / Highest
* MOM / PWM / L-Moments Posterior Density (HPD)
* Bayesian Parameter Estimation Interval/Region (Bayesian)

e x = (xg, 0, x)7

+ L(8:x) = Ty £ (xi: 6)
+ § = argmaxIn[£,(6; )]
6



“All models are wrong,
but some are useful”

-- George E. P. Box

By DavidMCEddy at en.wikipedia, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=115167166
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Maximum Values

An experiment using pseudo-random numbers, along with some theory
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Order Statistics

* Let X, X5, X3, ..., X,, beiid RVs
 with CDF: F(x)
+ and PDF: f(x) = = F (x)
*Also,letY; <Y, <Y; < ... <Y, bethe X’sin ascending order
* The Y’s are Order Statistics based on the X’s
* We'll focus on the Maximum Order Statistic, Y,



A Random Sample of Maximum Order Statistics
(based on Std. Normal Dist.)

‘norm’ PDF (Blue) and Normalized Histogram of Maximums (Green)

0.8 1

The figure at right depicts: 07
* Standard Normal PDF (blue) 06 1

* A normalized histogram of 200 maximum order °*]
statistics (green)

e  Where each maximum came from a random
sample of 12 standard normal RVs

0.4 1 max order stat

99% threshold

03 1

) y ) | norm 99%
* Two quantiles (“thresholds”): e threshold
e Standard normal 99% quantile (~2.33) 01

* Empirical 99% quantile of the 200 maxs (~3.24)

* Note that there is almost a full N(0,1) standard z
deviation between the quantiles.
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Distribution of the Maximum Order Statistic

The maximum order statistic ...
* has CDF, Y,,~ G, where G(y) = [F(y)]|"

G()’) — P(Yn < Y)
=PX;:<y,..X, <y)
=PX; <y)..P(X, <y)

= [FO)]"

* The PDFis g(y) = n[FOI" ™ f (¥)
* Note: If F(x) < 1, then F*(x) - 0,asn — oo



Max. Order Stat. Distribution
(based on Std. Normal Dist.)

If X;,...,X,~N(0,1) iid and Y,, is the
Maximum Order Statistic, then its CDF and
PDF are as follows, resp.:

G =[eM]"

g») =n[eM]" ()

At right, the PDF, g, is plotted (in green)
along with the histogram of maximums from
200 samples, each of sizen = 12.
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Max. Order Stat. Distribution
(based on Exponential Dist.)

The figure at right depicts:
* Exponential PDF, A = 1 (blue)

* A histogram of 200 maximum order
statistics (green)

*  Where each maximum came from a
random sample (iid) of 12 exponential
RVs (A =1)
* Two quantiles (“thresholds”):
* Exponential 99% quantile (~4.6)

*  Empirical 99% quantile of the 200 maxs
(~8.1)
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Extreme Value Theory (EVT)

The Generalized Extreme Value (GEV) Distribution and Theorem
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Generalized Extreme Value (GEV) Distribution

PDFs

C D F Generalized extreme value densities
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defined on the set {Z: 1+ §z-w) > 0},

o
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where —co < 4 < 00,0 > 0 and —o0 < ¢ < 00,

Density

0.2

e If¢ > 0, then G is the Fréchet dist. (heavy tailed)
e If ¢ <0, then G is the Weibull dist. (upper-bounded)

* Taking the limit as ¢ = 0, obtains the Gumbel dist.
(light-tailed)

0.1
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G(z) = exp l—exp {— (ﬂ)}], —00 < z < 0 4 2 0 2 4

o
X
All with =0, o = 1. Asterisks mark support-endpoints

Source: [Coles 2001]

NOTE: scipy.stats reverses the sign of . (c = —&) Source: [Wikipedia: GEV]
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Extreme Value Theorem

Let Y,, be the maximum order statistic of X4, ..., X,,, a sequence of iid
random variables with common CDF, F, then if there exists sequences

of constants {a,, > 0} and {b,,} such that

P (Y"C:nb” < Z) - G(z)asn = o

for a non-degenerate distribution function G,
then G is a member of the GEV family (described on the previous slide).



GEV is a Location-Scale Family of Distributions

P(Y, < w) is approximated by another member, G*, of the GEV location-scale family.

To see this, observe that the GEV distribution G is a family of distributions formed by translation and
scaling of a standard family member.

The standard member is H(x;¢) = exp[—(l + fx)‘l/f], foré + 0,
§(z—p)
o

andso, G(z) = H (?;f) ,for& # 0 and {z: 1+
For ¢ = 0, define H(x; 0) = exp[— exp(—x)]

> 0]

Y, —b -~ . . : .

Furthermore, P ( "a < Z) ~ H (%, 5) for large n, which, after some algebraic manipulation,
n

can be written as

*

Pty <w) ~ H (- ;*b";é) = 6" (W)

n

using different location and scale values, a,, and b,,.



GEV MLE Fit to Maximums based on Std. Normal RVs

* Same as earlier normal plot,
except that now the GEV fit (via
MLE) is also shown (red)

* The QQ-plot shows the normal-
based maximums (data) vs. the
GEV fit

Parent PDF (blue), Theoretical Max PDF (Green), Fitted GEV PDF (Red) & Normalized Histogram (Green)
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GEV MLE Fit to Maximums based on Exponential RVs

* Same as earlier exponential plot,
exce pt that nOW the GEV fit (Via Parent PDF (blue), Theoretical Max PDF (Green), Fitted GEV PDF (Red) & Normalized Histogram (Green)
MLE) is also shown (red)

* The QQ-plot shows the
exponential-based maximums
(data) vs. the GEV fit

lllllllllllllllllll
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Return Levels & Return Periods

* The quantiles of the GEV can be interpreted as return levels

* Areturn level is the value expected to be exceeded on average once every 1/p periods,
where 1 — p is the specific probability associated with the quantile G(Zp) =1-p

= zp =~ {1~ [log(1 )]}, £ % 0
zp = u—olog{—log(l-p)},&=0

* Z, is the return level associated with the return period of /



EVA Software

* R:

* ismev: https://cran.r-project.org/web/packages/ismev/index.html

* extRemes: https://cran.r-project.org/web/packages/extRemes/index.html

* and many, many more... see the following...
* https://cran.r-project.org/web/views/ExtremeValue.html (Many links to other EVA packages in R)

*  “A modeler’s guide to extreme value software”, Belzile, et al., arXiv:2205.07714v1, 16 May 2022

e Python:
* Pyextremes: https://georgebv.github.io/pyextremes/

» Scikit-extremes: https://kikocorreoso.github.io/scikit-extremes/

e Wafo: https://pypi.org/project/wafo/

* Documentation
* Both extRemes (R) and Pyextremes (Python) have excellent documentation
* Not that other packages don’t, but the docs for these two packages make good starting points for learning more about EVA.
* W.r.t. a Good Book, | recommend Coles’ book:

*  “An Introduction to Statistical Modeling of Extreme Values”
e ..thatis, ISMEV

12/15/22 Extreme Value Analysis
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Example 1

GEV Fit using ISMEV (R)

12/15/22

Extreme Value Analysis
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Example 1:ismev (R)

> library(ismev)
Loading required package: mgcv
Loading required package: nlme

Annual Maximum Sea-Levels at Port Pirie, South Australia

This is mgcv 1.8-40. For overview type 'help("mgcv-package")'.

> data(portpirie)
> plot(portpirie)
> ppfit <- gev.fit(portpirie[,2])

$conv \

[1] ©
[1] -4.339058

$nllh

$mle H o $

Information, derived
during the MLE fit, is
stored here.

[1] 3.87474692 0.19804120/-0.05008773

$se
[1] 0.02793211 0.02024610/0.09825633

> |

12/15/22
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Example 1: Diaghostics

Probability Plot Quantile Plot
R function call:
gev.diag(ppfit) i

Return Levels (& Wald 95% Cl)
* 10 year: zo4 = 4.30, [4.19, 4.41]

Return Level Plot Density Plot

N
* 100 year: Zy 91 = 4.69, [4.38, 5.00] gf——=--= . m
¢} —
T w0 |
A ~ 2
5 | = "
£ $ ‘ | o |
| i‘iﬁl
T I I II I g N :ZIWI T 1
1e-01  1e+00 1e+01 1e+02 1e+03 34 36 38 40 42 44 46 48

Return Period
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Example 1: Profile Likelihood

gev.profxi(ppfit, -0.3, 0.3) . Conflder\ce_ intervals produced using the
profile likelihood method are derived
o from the asymptotic Chi-Square
distribution of the likelihood ratio.
™ [ | .
5 ! 95% | * They are “better” for asymmetric, sparse
: . . [-0.21,0.17] : datasets, like those encountered in EVA.
. ! !
;: ! !
- | |
| |
| |
o | | Recall from the first slide of
: : this example, we had:
-0|.3 '-ol.z -0|.1 ofo of1 ! ofz of3 —0.243 < f < 0.142
Shape Parameter
$
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Peaks Over Threshold (POT)

and the Generalized Pareto Distribution (GPD)
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Peaks Over Threshold (POT)
& the Generalized Pareto Distribution (GPD)

o Let Xy, ..., X, iid ~F

* Define extreme events as those X;’s that exceed some
high threshold, u. 20

* |f F is known, then the distribution of threshold
exceedances is:

1-F(u+y)
1—-F(u)
* Otherwise, if ¥, = max(Xy, ..., X;;) and

Y, ~ GEV(x; u, g,¢) then, for large enough u, the
distribution of exceedances is approximately the

PX>u+yl|lX>u) =

Water Elevation [m NAVD88]

Generalized Pareto Distribution: O — - - n N = -
é’y _1/E \’g% \9% ‘\9% \’9% Date-T‘f:e (GMT)\’qq \99 \99
Hy)=1— (1 +F)
i} But now there’s a problem...
where {y:y > 0and (1 + &y/&) > 0}
and 6 =0+ &(u— ) How do we choose the threshold?
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Choosing a Threshold for POT: Example

Fatal Injuries from Aviation Accidents
“Quantification of the large accidents which have far

reaching effect (fatality) would

provide objective guidance in long-term planning and response for manufacturers,

insurers and re-insurers.” [Das 2016]

4

28 o4 19
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S 151
3 =]
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S o
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g8 8 - > 27
e ] 2
— S
= 53
g s t 8-
N
8 -
8 -
8_
-ILLII
o - o -

1982 1985 1990 1995 2000 2005 2010 2014 1

Year
Numbers of fatal injuries from aviation accidents, 1982 - 2014

Source: [Das 2016]
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Choosing a Threshold for POT: MRL

Mean Residual Life Plot

* If the tail data follow a GPD with lower
bound of u, then the Mean Residual w7~ 12 remner o e
Life (MRL) plot should be approx.
linear for values above u.

80 100
| |

60
I

Mean Excess

mri(x) =EX —x|X > x)

40
|

* MRL is also sometimes called the Mean
Excess Function o Z'OT a0 60 so 100 120 140

Threshold

* So, select the smallest u which gives a
linear MRL plot.

Source: [Das 2016]
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Choosing a Threshold for POT: Parameter Stability

12/15/22

Shape

Modified Scale

-05 056 15

-100 050 150

I I

N

A

¢¢¢T+++++++%++-+++%{>"‘>

I R RRRe Y

Extreme Value Analysis

32



Stationarity & Non-Stationarity



St a t i O n a r i ty Stationary Time Series

10

* X{,X5, ...1s a stationary random s | | /
process if for any set of integers | w M MM’ [\\ 'W Wv

{i1, ..., i} and any integer m, ADF - 6128
the joint distributions of 0 200 a0 1000
(Xil’ ""Xik) and
(Xll S o IXlk+m) are |dentlca|. ) Non-stationary Time Series
o ﬂ”\/
& WARYS /\/‘\,\r‘/\ W\M
s /\«\
3 ADF = -2.0251 f
] \W\/MVJ
§_

0 200 400 600 800 1000

t

https://en.wikipedia.org/wiki/Stationary_process
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Dealing with Non-Stationarity

e Data often contains trends and seasonal cycles u(t) = o + (1t + u2t2,
(financial, weather)
* Using BM with annual maximums can avoid g(t) = 09 + o1t,
seasonal cycles (weather)
* Trends and cycles can be removed via &, t<to
regression or time-series modeling. E(t) = : ’ S ’
1, 0-

Example from extRemes
[Gilliland 2016]



Dealing with Non-Stationarity (cont.)

Financial Application: Estimate VaR (Value-at-Risk) for a given portfolio

Closing value

150

250 300

200

100

50

S&P 500 Closing Values

Daily % Returns

Transformations can be used on
data to obtain stationarity

For example, differencing or
taking logarithms of ratios of
successive observations can
approximate stationarity (e.g.,
log-daily returns in finance)

%Return

T
1960

T T T T
1965 1970 1975 1980

Time

T
1985 1960

Source: [Beirlant 2004]
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Central Limit Theorem”

* Let X4, X5, X3, ..., X,, be independent & identically distributed (iid) random variables (RVs)

* from a distribution that has mean i and positive variance 2,

- 1
* andlet X,, = ;Z?=1Xi, then

Xn— U
g/n

d
S N(0,1)

"This is a limited form of the CLT; other variants impose fewer conditions.



Case Studies (brief)

Solar Flares, California Droughts, and Human Life Span
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“EVA of Solar Flare Events” [Tsiftsi 2018]

« 1859 — the “Carrington Event” (X45), most
intense geomagnetic storm in recorded history

« Est. cost to U.S. of similar event: $670 billion to 0.022
$2.9 trillion (~ 3.6% — 15.5% annual GDP) — o

0.020 « ++ 95% profile likelihood C.I.

https://en.wikipedia.org/wiki/Carrington_Event#Similar_events

* Return Period: 110 years,
« with profile likelihood Cl ~ (20, 6500) years.

0.018

0.016

« Probability of a Carrington-like event happening in g *

the next decade is 9% 3 oo

« 2003 — “Halloween solar storms” (X35) generated
largest solar flare ever recorded by GOES

* Return Period: 38 years, 0008

+ with profile likelihood Cl ~ (10, 300) years.

« A Halloween-like event is expected in the next |
decade with probability 23.8%

0.002

Return period (years)
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California Droughts [Robeson 2015]

* The 1-year 2014 drought was most |
severe in the 1895-2014 record \‘
* Has a return period of 140-180 years, -] i
* however, quantile mapping produces return _____ e

Year

periods of 700—900 years

 Cumulative 3- and 4-year droughts are
estimated to be much more severe

* 2012-2014 drought is nearly a 10,000-year EEE RN R R T e
event

() L ()
e 2012-2015 drought has an almost |

Frequency
o )
o o
% 2014
]
e ——)
]
Probability Density
o o
o - n
To014 ]

- 950
k)
& 900
c

850

DSI
| I | I | |
A O ® N ® ©

incalculable return period and is completely
WithOUt precedent 40 70100 200 500 11)00 2000 70020 30 40 50 60
Return Period (years) Block Size for GEV Fit (years)

PDSI — Palmer Drought Severity Index
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Limits to Human Life Span [Einmahl 2019]

Q-Q plot - women 2015

Q-Q plot - men 2015

« Used EVA to consider whether the human - T
life span is bounded: . . /

» 30 years of data from Dutch residents

Figure 1. Generalized Pareto Q-Q plots for women and men for the year 2015.

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

* The estimated extreme value indices (¢),
exhibited in Figure 2, at right, are all

span.

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

negative, hinting at a finite upper
endpoint, that is, a finite maximum life “f:

Figure 2. Estimated extreme values indices for the years of death 1985 + j,j = 1,...,30.



Example 2

GEV Fit using PyExtremes (Python)

12/15/22
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Example 2: pyextremes (Python)

* Raw Data (.csv) read & “cleaned”
* Sorted in ascending order
* NaN entries removed
* Converted to Pandas.Series
* https://pandas.pydata.org/
* Trend removed (+2.87 mm/yr)

> from pyextremes import EVA
> model = EVA(data)

« EVA class provides interface to
pyextremes library

> model.get_extremes(method="BM",
block_size="365.2425D")

> model.plot_extremes()

12/15/22

Water Elevation [m NAVD88]

Water Levels for the Battery Station in New York

1940 1960 1980 2000 2020
Date-Time (GMT)

See https://pypi.org/project/pyextremes/
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Example 2: pyextremes (Model Fit)

12/15/22

> model.fit_model()

Univariate Extreme Value Analysis

Data label: Water Elevation [m NAVDS88] Size: 796,751
Start: November 1926 End: March 2020

Count: 94 Extraction method: BM
Type: high Block size: 365 days 05:49:12
Model
Model: MLE Distribution: genextreme
Log-likelihood: 18.026 AIC: -29.786
Free parameters: c=-0.266 Fixed parameters: All parameters are free

loc=1.353

scale=0.146
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Example 2: pyextremes (Model Summary)

return value lower ci upper ci
return period

1.0 0.802610 -0.313507 1.025702
2.0 1.409343 1.372263 1.453800
summary = model.get_summary ( 5.0 1.622565 1.547693 1.706435

return period=[1, 2, 5, 10, 25, 50, 100, 250, 500, 1000],
alpha=0.95, 10.0 1.803499 1.674898 1.951093
n_samples=1000, 250  2.090267 1.854483 2.392612
;ummary 50.0 2.354889 1.992968 2.875355
100.0 2.671313 2.139693 3.575801
250.0 3.188356 2.346309 4.843293
500.0 3.671580 2.522520 6.239443
1000.0 4.252220 2.704200 8.166698
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Example 2:
pyextremes
Diagnostic Plots

Water Elevation [m NAVD88]

> model.plot_diagnostic(alpha=0.95)
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Example 2: pyextremes (Return Values Plot)

> model.plot_return_values( 21
return_period=np.logspace(0.01, 2, 100),

3.0 1

return_period_size="365.2425D", @

()

alpha=0.95, §
E. 2.5 1

) 5
% 2.0 -

g
1.5 1

1 10 100
Return period

12/15/22 Extreme Value Analysis



BM or POT?

* We cannot say that one method is better than another

* Different models and approaches (correctly applied) should converge
to the same answer (within reasonable limits)

* So, investigate both

* BM is a simpler and more stable model
* Requires very little input from the user
* Use BM with a reasonable block size to avoid capturing seasonality
* Get the initial estimates and see how the extremes behave

* Use POT with a reasonable threshold and declustering
* To see how well the model behaves near the target return periods
* and to gain more confidence in the results

Source: PyExtremes User Guide



