from PIL import Image
from fall_prediction import Fall_prediction
import matplotlib.pyplot as plt
img1 = Image.open("Images/fall_img_1.png")
img2 = Image.open("Images/fall_img_2.png")
fig = plt.figure(figsize=(10, 7))
fig.add_subplot(1, 2, 1)
plt.imshow(img1)
plt.title("Image at time t")
plt.axis("off")
fig.add_subplot(1, 2, 2)
plt.imshow(img2)
plt.title("Image at time t+1 ")
plt.axis("off")
plt.show()
response = Fall_prediction(img1,img2)
if response:
print("There is", response['category'])
print("Confidence :", response['confidence'])
print("Angle : ", response['angle'])
print("Keypoint_corr :", response['keypoint_corr'])
else:
print("There is no fall detetcion...")
There is no fall detetcion...
img1 = Image.open("Images/fall_img_1.png")
img2 = Image.open("Images/fall_img_2.png")
img3 = Image.open("Images/fall_img_3.png")
fig = plt.figure(figsize=(12,12))
fig.add_subplot(1, 3, 1)
plt.imshow(img1)
plt.title("image at time t")
plt.axis("off")
fig.add_subplot(1, 3, 2)
plt.imshow(img2)
plt.title("image at time t+1")
plt.axis("off")
fig.add_subplot(1, 3, 3)
plt.imshow(img3)
plt.title("image at time t+2")
plt.axis("off")
plt.show()
response = Fall_prediction(img1,img2,img3)
if response:
print("There is", response['category'])
print("Confidence :", response['confidence'])
print("Angle : ", response['angle'])
print("Keypoint_corr :", response['keypoint_corr'])
else:
print("There is no fall detetcion...")
There is FALL Confidence : 0.8991963234324727 Angle : 69.17818735314414 Keypoint_corr : {'left shoulder': [104.0, 113.0], 'left hip': [135.0, 128.0], 'right shoulder': [95.0, 112.0], 'right hip': [138.0, 127.0]}