In this tutorial we show how to import a jetset model into sherpa, and finally we perform a model fitting. To run this plugin you have to install Sherpa: https://sherpa.readthedocs.io/en/latest/install.html
import warnings
warnings.filterwarnings('ignore')
import matplotlib.pylab as plt
import jetset
from jetset.test_data_helper import test_SEDs
from jetset.data_loader import ObsData,Data
from jetset.plot_sedfit import PlotSED
from jetset.test_data_helper import test_SEDs
test_SEDs
['/Users/orion/anaconda3/envs/jetset/lib/python3.8/site-packages/jetset/test_data/SEDs_data/SED_3C345.ecsv', '/Users/orion/anaconda3/envs/jetset/lib/python3.8/site-packages/jetset/test_data/SEDs_data/SED_MW_Mrk421_EBL_DEABS.ecsv', '/Users/orion/anaconda3/envs/jetset/lib/python3.8/site-packages/jetset/test_data/SEDs_data/SED_MW_Mrk501_EBL_ABS.ecsv', '/Users/orion/anaconda3/envs/jetset/lib/python3.8/site-packages/jetset/test_data/SEDs_data/SED_MW_Mrk501_EBL_DEABS.ecsv']
print(test_SEDs[2])
data=Data.from_file(test_SEDs[2])
/Users/orion/anaconda3/envs/jetset/lib/python3.8/site-packages/jetset/test_data/SEDs_data/SED_MW_Mrk501_EBL_ABS.ecsv
%matplotlib inline
sed_data=ObsData(data_table=data)
sed_data.group_data(bin_width=0.2)
sed_data.add_systematics(0.1,[10.**6,10.**29])
p=sed_data.plot_sed()
================================================================================ *** binning data *** ---> N bins= 90 ---> bin_widht= 0.2 ================================================================================
sed_data.save('Mrk_501.pkl')
from jetset.sed_shaper import SEDShape
my_shape=SEDShape(sed_data)
my_shape.eval_indices(minimizer='lsb',silent=True)
p=my_shape.plot_indices()
p.setlim(y_min=1E-15,y_max=1E-6)
================================================================================ *** evaluating spectral indices for data *** ================================================================================
mm,best_fit=my_shape.sync_fit(check_host_gal_template=True,
Ep_start=None,
minimizer='lsb',
silent=True,
fit_range=[10.,21.])
================================================================================ *** Log-Polynomial fitting of the synchrotron component *** ---> first blind fit run, fit range: [10.0, 21.0] ---> class: HSP ---> class: HSP
model name | name | val | bestfit val | err + | err - | start val | fit range min | fit range max | frozen |
---|---|---|---|---|---|---|---|---|---|
LogCubic | b | -6.411143e-02 | -6.411143e-02 | 7.838958e-03 | -- | -4.778764e-02 | -1.000000e+01 | 0.000000e+00 | False |
LogCubic | c | -1.751705e-03 | -1.751705e-03 | 1.127020e-03 | -- | 3.576201e-03 | -1.000000e+01 | 1.000000e+01 | False |
LogCubic | Ep | 1.703747e+01 | 1.703747e+01 | 9.437333e-02 | -- | 1.626870e+01 | 0.000000e+00 | 3.000000e+01 | False |
LogCubic | Sp | -1.030068e+01 | -1.030068e+01 | 1.884116e-02 | -- | -1.025412e+01 | -3.000000e+01 | 0.000000e+00 | False |
host_galaxy | nuFnu_p_host | -1.006556e+01 | -1.006556e+01 | 5.462500e-02 | -- | -1.025412e+01 | -1.225412e+01 | -8.254123e+00 | False |
host_galaxy | nu_scale | 1.730750e-02 | 1.730750e-02 | 3.694838e-03 | -- | 0.000000e+00 | -5.000000e-01 | 5.000000e-01 | False |
---> sync nu_p=+1.703747e+01 (err=+9.437333e-02) nuFnu_p=-1.030068e+01 (err=+1.884116e-02) curv.=-6.411143e-02 (err=+7.838958e-03) ================================================================================
my_shape.IC_fit(fit_range=[23.,29.],minimizer='minuit',silent=True)
p=my_shape.plot_shape_fit()
p.setlim(y_min=1E-15)
================================================================================ *** Log-Polynomial fitting of the IC component *** ---> fit range: [23.0, 29.0] ---> LogCubic fit
model name | name | val | bestfit val | err + | err - | start val | fit range min | fit range max | frozen |
---|---|---|---|---|---|---|---|---|---|
LogCubic | b | -1.565399e-01 | -1.565399e-01 | 2.551779e-02 | -- | -1.000000e+00 | -1.000000e+01 | 0.000000e+00 | False |
LogCubic | c | -4.351917e-02 | -4.351917e-02 | 2.032066e-02 | -- | -1.000000e+00 | -1.000000e+01 | 1.000000e+01 | False |
LogCubic | Ep | 2.529709e+01 | 2.529709e+01 | 1.817241e-01 | -- | 2.536916e+01 | 0.000000e+00 | 3.000000e+01 | False |
LogCubic | Sp | -1.058825e+01 | -1.058825e+01 | 5.046950e-02 | -- | -1.000000e+01 | -3.000000e+01 | 0.000000e+00 | False |
---> IC nu_p=+2.529709e+01 (err=+1.817241e-01) nuFnu_p=-1.058825e+01 (err=+5.046950e-02) curv.=-1.565399e-01 (err=+2.551779e-02) ================================================================================
In this step we are not fitting the model, we are just obtaining the phenomenological pre_fit
model, that will be fitted in using minuit ore least-square bound, as shown below
from jetset.obs_constrain import ObsConstrain
from jetset.model_manager import FitModel
sed_obspar=ObsConstrain(beaming=25,
B_range=[0.001,0.1],
distr_e='lppl',
t_var_sec=3*86400,
nu_cut_IR=1E12,
SEDShape=my_shape)
prefit_jet=sed_obspar.constrain_SSC_model(electron_distribution_log_values=False,silent=True)
prefit_jet.save_model('prefit_jet.pkl')
================================================================================ *** constrains parameters from observable ***
model name | name | par type | units | val | phys. bound. min | phys. bound. max | log | frozen |
---|---|---|---|---|---|---|---|---|
jet_leptonic | R | region_size | cm | 1.056958e+16 | 1.000000e+03 | 1.000000e+30 | False | False |
jet_leptonic | R_H | region_position | cm | 1.000000e+17 | 0.000000e+00 | -- | False | True |
jet_leptonic | B | magnetic_field | gauss | 5.050000e-02 | 0.000000e+00 | -- | False | False |
jet_leptonic | beam_obj | beaming | lorentz-factor* | 2.500000e+01 | 1.000000e-04 | -- | False | False |
jet_leptonic | z_cosm | redshift | 3.360000e-02 | 0.000000e+00 | -- | False | False | |
jet_leptonic | gmin | low-energy-cut-off | lorentz-factor* | 4.703917e+02 | 1.000000e+00 | 1.000000e+09 | False | False |
jet_leptonic | gmax | high-energy-cut-off | lorentz-factor* | 2.310708e+06 | 1.000000e+00 | 1.000000e+15 | False | False |
jet_leptonic | N | emitters_density | 1 / cm3 | 7.087120e+00 | 0.000000e+00 | -- | False | False |
jet_leptonic | gamma0_log_parab | turn-over-energy | lorentz-factor* | 1.045836e+04 | 1.000000e+00 | 1.000000e+09 | False | False |
jet_leptonic | s | LE_spectral_slope | 2.248787e+00 | -1.000000e+01 | 1.000000e+01 | False | False | |
jet_leptonic | r | spectral_curvature | 3.205571e-01 | -1.500000e+01 | 1.500000e+01 | False | False |
================================================================================
pl=prefit_jet.plot_model(sed_data=sed_data)
pl.add_model_residual_plot(prefit_jet,sed_data)
pl.setlim(y_min=1E-15,x_min=1E7,x_max=1E29)
from jetset.template_2Dmodel import EBLAbsorptionTemplate
ebl_franceschini=EBLAbsorptionTemplate.from_name('Franceschini_2008')
from jetset.jet_model import Jet
prefit_jet=Jet.load_model('prefit_jet.pkl')
model name | name | par type | units | val | phys. bound. min | phys. bound. max | log | frozen |
---|---|---|---|---|---|---|---|---|
jet_leptonic | gmin | low-energy-cut-off | lorentz-factor* | 4.703917e+02 | 1.000000e+00 | 1.000000e+09 | False | False |
jet_leptonic | gmax | high-energy-cut-off | lorentz-factor* | 2.310708e+06 | 1.000000e+00 | 1.000000e+15 | False | False |
jet_leptonic | N | emitters_density | 1 / cm3 | 7.087120e+00 | 0.000000e+00 | -- | False | False |
jet_leptonic | gamma0_log_parab | turn-over-energy | lorentz-factor* | 1.045836e+04 | 1.000000e+00 | 1.000000e+09 | False | False |
jet_leptonic | s | LE_spectral_slope | 2.248787e+00 | -1.000000e+01 | 1.000000e+01 | False | False | |
jet_leptonic | r | spectral_curvature | 3.205571e-01 | -1.500000e+01 | 1.500000e+01 | False | False | |
jet_leptonic | R | region_size | cm | 1.056958e+16 | 1.000000e+03 | 1.000000e+30 | False | False |
jet_leptonic | R_H | region_position | cm | 1.000000e+17 | 0.000000e+00 | -- | False | True |
jet_leptonic | B | magnetic_field | gauss | 5.050000e-02 | 0.000000e+00 | -- | False | False |
jet_leptonic | beam_obj | beaming | lorentz-factor* | 2.500000e+01 | 1.000000e-04 | -- | False | False |
jet_leptonic | z_cosm | redshift | 3.360000e-02 | 0.000000e+00 | -- | False | False |
composite_model=FitModel(nu_size=500,name='EBL corrected',template=my_shape.host_gal)
composite_model.add_component(prefit_jet)
composite_model.add_component(ebl_franceschini)
composite_model.link_par(par_name='z_cosm', from_model='Franceschini_2008', to_model='jet_leptonic')
composite_model.composite_expr='(jet_leptonic+host_galaxy)*Franceschini_2008'
composite_model.eval()
composite_model.plot_model()
==> par: z_cosm from model: Franceschini_2008 linked to same parameter in model jet_leptonic
<jetset.plot_sedfit.PlotSED at 0x7fd117a0c5b0>
composite_model.freeze('jet_leptonic','z_cosm')
composite_model.freeze('jet_leptonic','R_H')
composite_model.jet_leptonic.parameters.beam_obj.fit_range=[5., 50.]
composite_model.jet_leptonic.parameters.R.fit_range=[10**15.5,10**17.5]
composite_model.jet_leptonic.parameters.gmax.fit_range=[1E5,1E7]
composite_model.host_galaxy.parameters.nuFnu_p_host.frozen=False
composite_model.host_galaxy.parameters.nu_scale.frozen=True
from jetset.minimizer import ModelMinimizer
composite_model.jet_leptonic.parameters.z_cosm.frozen=True
model_minimizer_lsb=ModelMinimizer('sherpa')
best_fit=model_minimizer_lsb.fit(composite_model,sed_data,1E11,1E29,fitname='SSC-best-fit-sherpa',repeat=1)
filtering data in fit range = [1.000000e+11,1.000000e+29] data length 31 ================================================================================ *** start fit process *** -----
0it [00:00, ?it/s]
jetset model name R renamed to R_sh due to sherpa internal naming convention - best chisq=8.05341e+00 ------------------------------------------------------------------------- Fit report Model: SSC-best-fit-sherpa
model name | name | par type | units | val | phys. bound. min | phys. bound. max | log | frozen |
---|---|---|---|---|---|---|---|---|
host_galaxy | nuFnu_p_host | nuFnu-scale | erg / (cm2 s) | -1.006056e+01 | -2.000000e+01 | 2.000000e+01 | False | False |
host_galaxy | nu_scale | nu-scale | Hz | 1.730750e-02 | -2.000000e+00 | 2.000000e+00 | False | True |
jet_leptonic | gmin | low-energy-cut-off | lorentz-factor* | 2.556574e+02 | 1.000000e+00 | 1.000000e+09 | False | False |
jet_leptonic | gmax | high-energy-cut-off | lorentz-factor* | 2.077993e+06 | 1.000000e+00 | 1.000000e+15 | False | False |
jet_leptonic | N | emitters_density | 1 / cm3 | 8.512524e+00 | 0.000000e+00 | -- | False | False |
jet_leptonic | gamma0_log_parab | turn-over-energy | lorentz-factor* | 5.659107e+03 | 1.000000e+00 | 1.000000e+09 | False | False |
jet_leptonic | s | LE_spectral_slope | 2.208208e+00 | -1.000000e+01 | 1.000000e+01 | False | False | |
jet_leptonic | r | spectral_curvature | 2.145295e-01 | -1.500000e+01 | 1.500000e+01 | False | False | |
jet_leptonic | R | region_size | cm | 1.449139e+16 | 1.000000e+03 | 1.000000e+30 | False | False |
jet_leptonic | R_H | region_position | cm | 1.000000e+17 | 0.000000e+00 | -- | False | True |
jet_leptonic | B | magnetic_field | gauss | 1.175386e-02 | 0.000000e+00 | -- | False | False |
jet_leptonic | beam_obj | beaming | lorentz-factor* | 4.377160e+01 | 1.000000e-04 | -- | False | False |
jet_leptonic | z_cosm(M) | redshift | 3.360000e-02 | 0.000000e+00 | -- | False | True | |
Franceschini_2008 | z_cosm(L,jet_leptonic) | redshift | -- | -- | -- | False | True |
converged=True calls=328 mesg=
Parameter | Best-fit value | Approximate error |
---|---|---|
EBL corrected.nuFnu_p_host | -10.0606 | ± 0.0521133 |
EBL corrected.gmin | 255.657 | ± 294.461 |
EBL corrected.gmax | 2.07799e+06 | ± 0 |
EBL corrected.N | 8.51252 | ± 8.88032 |
EBL corrected.gamma0_log_parab | 5659.11 | ± 0 |
EBL corrected.s | 2.20821 | ± 0.163168 |
EBL corrected.r | 0.214529 | ± 0.0609965 |
EBL corrected.R_sh | 1.44914e+16 | ± 0 |
EBL corrected.B | 0.0117539 | ± 0.00491693 |
EBL corrected.beam_obj | 43.7716 | ± 11.429 |
dof=21 chisq=8.053410, chisq/red=0.383496 null hypothesis sig=0.994914 best fit pars
model name | name | val | bestfit val | err + | err - | start val | fit range min | fit range max | frozen |
---|---|---|---|---|---|---|---|---|---|
host_galaxy | nuFnu_p_host | -1.006056e+01 | -1.006056e+01 | 5.211328e-02 | -- | -1.006556e+01 | -1.225412e+01 | -8.254123e+00 | False |
host_galaxy | nu_scale | 1.730750e-02 | -- | -- | -- | 1.730750e-02 | -5.000000e-01 | 5.000000e-01 | True |
jet_leptonic | gmin | 2.556574e+02 | 2.556574e+02 | 2.944608e+02 | -- | 4.703917e+02 | 1.000000e+00 | 1.000000e+09 | False |
jet_leptonic | gmax | 2.077993e+06 | 2.077993e+06 | 0.000000e+00 | -- | 2.310708e+06 | 1.000000e+05 | 1.000000e+07 | False |
jet_leptonic | N | 8.512524e+00 | 8.512524e+00 | 8.880316e+00 | -- | 7.087120e+00 | 0.000000e+00 | -- | False |
jet_leptonic | gamma0_log_parab | 5.659107e+03 | 5.659107e+03 | 0.000000e+00 | -- | 1.045836e+04 | 1.000000e+00 | 1.000000e+09 | False |
jet_leptonic | s | 2.208208e+00 | 2.208208e+00 | 1.631683e-01 | -- | 2.248787e+00 | -1.000000e+01 | 1.000000e+01 | False |
jet_leptonic | r | 2.145295e-01 | 2.145295e-01 | 6.099654e-02 | -- | 3.205571e-01 | -1.500000e+01 | 1.500000e+01 | False |
jet_leptonic | R | 1.449139e+16 | 1.449139e+16 | 0.000000e+00 | -- | 1.056958e+16 | 3.162278e+15 | 3.162278e+17 | False |
jet_leptonic | R_H | 1.000000e+17 | -- | -- | -- | 1.000000e+17 | 0.000000e+00 | -- | True |
jet_leptonic | B | 1.175386e-02 | 1.175386e-02 | 4.916935e-03 | -- | 5.050000e-02 | 0.000000e+00 | -- | False |
jet_leptonic | beam_obj | 4.377160e+01 | 4.377160e+01 | 1.142901e+01 | -- | 2.500000e+01 | 5.000000e+00 | 5.000000e+01 | False |
jet_leptonic | z_cosm(M) | 3.360000e-02 | -- | -- | -- | 3.360000e-02 | 0.000000e+00 | -- | True |
Franceschini_2008 | z_cosm(L,jet_leptonic) | 3.360000e-02 | -- | -- | -- | -- | 0.000000e+00 | -- | True |
------------------------------------------------------------------------- ================================================================================
composite_model.set_nu_grid(1E6,1E30,200)
composite_model.eval()
p=composite_model.plot_model(sed_data=sed_data)
Using the sherpa_fitter
you can access all the sherpa fetarues https://sherpa.readthedocs.io/en/latest/fit/index.html
model_minimizer_lsb.minimizer.sherpa_fitter.est_errors()
WARNING: hard minimum hit for parameter EBL corrected.gmin WARNING: hard maximum hit for parameter EBL corrected.gmin WARNING: hard minimum hit for parameter EBL corrected.gmax WARNING: hard maximum hit for parameter EBL corrected.gmax WARNING: hard minimum hit for parameter EBL corrected.B WARNING: hard maximum hit for parameter EBL corrected.B
Parameter | Best-fit value | Lower Bound | Upper Bound |
---|---|---|---|
EBL corrected.nuFnu_p_host | -10.0606 | -0.0509997 | 0.0509997 |
EBL corrected.gmin | 255.657 | ----- | ----- |
EBL corrected.gmax | 2.07799e+06 | ----- | ----- |
EBL corrected.N | 8.51252 | -2.52709 | 2.52709 |
EBL corrected.gamma0_log_parab | 5659.11 | -1064.69 | 1064.69 |
EBL corrected.s | 2.20821 | -0.0248637 | 0.0248637 |
EBL corrected.r | 0.214529 | -0.0197456 | 0.0197456 |
EBL corrected.R_sh | 1.44914e+16 | -4.11409e+15 | 4.11409e+15 |
EBL corrected.B | 0.0117539 | ----- | ----- |
EBL corrected.beam_obj | 43.7716 | -4.81248 | 4.81248 |
from sherpa.plot import IntervalProjection
iproj = IntervalProjection()
iproj.prepare(fac=5, nloop=15)
iproj.calc(model_minimizer_lsb.minimizer.sherpa_fitter, model_minimizer_lsb.minimizer._sherpa_model.s)
iproj.plot()
WARNING: hard minimum hit for parameter EBL corrected.gmin WARNING: hard maximum hit for parameter EBL corrected.gmin WARNING: hard minimum hit for parameter EBL corrected.gmax WARNING: hard maximum hit for parameter EBL corrected.gmax WARNING: hard minimum hit for parameter EBL corrected.B WARNING: hard maximum hit for parameter EBL corrected.B