import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
%matplotlib notebook
from threeML import *
from astromodels.xspec import *
# The filter library takes a while to load so you must import it explicitly..
from threeML.plugins.photometry.filter_library import threeML_filter_library
Configuration read from /Users/jburgess/.threeML/threeML_config.yml Loading xspec models...done Loading optical filters
get_available_plugins()
Available plugins: FermiGBMTTELike for Fermi GBM TTE (all detectors) FermiLATLLELike for Fermi LAT LLE OGIPLike for All OGIP-compliant instruments FermipyLike for Fermi LAT (with fermipy) XYLike for n.a. EventListLike for Generic EventList data PhotometryLike for Generic photometric data SwiftXRTLike for Swift XRT VERITASLike for VERITAS SpectrumLike for General binned spectral data
We use speclite to handle optical filters: http://speclite.readthedocs.io/en/latest/ .
Therefore, you can easily build your own custom filters, use the built in speclite filters, or use the 3ML filter library that we have built thanks to Spanish Virtual Observatory (http://svo.cab.inta-csic.es/main/index.php).
If you use these filters, please be sure to cite the proper sources!
Let's say we have our own 1-m telescope with a Johnson filter and we happen to record the data. We also have simultaneous data at other wavelengths and we want to compare. Let's setup the optical plugin (we'll ignore the other data for now).
import speclite.filters as spec_filters
my_backyard_telescope_filter = spec_filters.load_filter('bessell-r')
# NOTE:
my_backyard_telescope_filter.name
'bessell-R'
NOTE: the filter name is 'bessell-R'. The plugin will look for the name after the '-' i.e 'R'
Now let's build a 3ML plugin via PhotometryLike.
Our data are entered as keywords with the name of the filter as the keyword and the data in an magnitude,error tuple, i.e. R=(mag,mag_err):
my_backyard_telescope = PhotometryLike('backyard_astronomy',
filters=my_backyard_telescope_filter,
R=(20,.1) )
my_backyard_telescope.display_filters()
Using chi2 statistic with the provided errors.
Explore the filter library. If you cannot find what you need, it is simple to add your own
threeML_filter_library.SLOAN
SDSS: - u - g - r - i - z
spec_filters.plot_filters(threeML_filter_library.SLOAN.SDSS)
spec_filters.plot_filters(threeML_filter_library.Herschel.SPIRE)
spec_filters.plot_filters(threeML_filter_library.Keck.NIRC2)
Following the example from speclite, we can build our own filters and add them:
fangs_g = spec_filters.FilterResponse(
wavelength = [3800, 4500, 5200] * u.Angstrom,
response = [0, 0.5, 0], meta=dict(group_name='fangs', band_name='g'))
fangs_r = spec_filters.FilterResponse(
wavelength = [4800, 5500, 6200] * u.Angstrom,
response = [0, 0.5, 0], meta=dict(group_name='fangs', band_name='r'))
fangs = spec_filters.load_filters('fangs-g', 'fangs-r')
fangslike = PhotometryLike('fangs',filters=fangs,g=(20,.1),r=(18,.1))
fangslike.display_filters()
Using chi2 statistic with the provided errors.
Now we will look at GROND. We get the filter from the 3ML filter library.
(Just play with tab completion to see what is available!)
grond = PhotometryLike('GROND',
filters=threeML_filter_library.ESO.GROND,
#g=(21.5.93,.23),
#r=(22.,0.12),
i=(21.8,.01),
z=(21.2,.01),
J=(19.6,.01),
H=(18.6,.01),
K=(18.,.01))
Using chi2 statistic with the provided errors.
grond.display_filters()
Here we use XSPEC's dust extinction models for the milky way and the host
spec = Powerlaw() * XS_zdust() * XS_zdust()
data_list = DataList(grond)
model = Model(PointSource('grb',0,0,spectral_shape=spec))
spec.piv_1 = 1E-2
spec.index_1.fix=False
spec.redshift_2 = 0.347
spec.redshift_2.fix = True
spec.e_bmv_2 = 5./2.93
spec.e_bmv_2.fix = True
spec.rv_2 = 2.93
spec.rv_2.fix = True
spec.method_2 = 3
spec.method_2.fix=True
spec.e_bmv_3 = .002/3.08
spec.e_bmv_3.fix = True
spec.rv_3= 3.08
spec.rv_3.fix=True
spec.redshift_3 = 0
spec.redshift_3.fix=True
spec.method_3 = 1
spec.method_3.fix=True
jl = JointLikelihood(model,data_list)
We compute $m_{\rm AB}$ from astromodels photon fluxes. This is done by convolving the differential flux over the filter response:
$ F[R,f_\lambda] \equiv \int_0^\infty \frac{dg}{d\lambda}(\lambda)R(\lambda) \omega(\lambda) d\lambda$
where we have converted the astromodels functions to wavelength properly.
jl.set_minimizer('ROOT')
_ = jl.fit()
Best fit values:
Value | Unit | |
---|---|---|
grb.spectrum.main.composite.K_1 | (4.61 +/- 0.12) x 10 | 1 / (cm2 keV s) |
grb.spectrum.main.composite.index_1 | -1.144 +/- 0.011 |
Correlation matrix:
1.00 | 0.99 |
0.99 | 1.00 |
Values of -log(likelihood) at the minimum:
-log(likelihood) | |
---|---|
GROND | 954.636274 |
total | 954.636274 |
Values of statistical measures:
statistical measures | |
---|---|
AIC | 1919.272548 |
BIC | 1912.491424 |
_=display_photometry_model_magnitudes(jl)
new_grond = grond.get_simulated_dataset()
Using chi2 statistic with the provided errors.
_ = plot_point_source_spectra(jl.results,flux_unit='erg/(cm2 s keV)',
xscale='linear',
energy_unit='nm',ene_min=1E3, ene_max=1E5 )