from qiskit import *
from math import pi
import numpy as np
from qiskit.visualization import *
import matplotlib.pyplot as plt
There are two commonly-used three-qubit gates. For three qubits, the basis vectors are ordered as
$$\left|000\right\rangle, \left|001\right\rangle, \left|010\right\rangle, \left|011\right\rangle, \left|100\right\rangle, \left|101\right\rangle, \left|110\right\rangle, \left|111\right\rangle,$$which, as bitstrings, represent the integers $0,1,2,\cdots, 7$. Again, Qiskit uses a representation in which the first qubit is on the right-most side of the tensor product and the third qubit is on the left-most side:
$$\left|abc\right\rangle : \underset{\text{qubit 2}}{\left|a\right\rangle}\otimes \underset{\text{qubit 1}}{\left|b\right\rangle}\otimes \underset{\text{qubit 0}}{\left|c\right\rangle}.$$The Toffoli gate flips the third qubit if the first two qubits (LSB) are both $\left|1\right\rangle$:
$$\left|abc\right\rangle \rightarrow \left|bc\oplus a\right\rangle \otimes \left|b\right\rangle \otimes \left|c\right\rangle.$$In matrix form, the Toffoli gate is $$ C_{CX} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}. $$
qc = QuantumCircuit(3)
qc.ccx(0,1,2)
qc.draw(output='mpl')
backend = Aer.get_backend('unitary_simulator')
job = execute(qc, backend)
result = job.result()
print(result.get_unitary(qc, decimals=3))
[[1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j] [0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j] [0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j] [0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j] [0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j] [0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j] [0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j] [0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]]
The Fredkin gate, or the controlled swap gate, exchanges the second and third qubits if the first qubit (LSB) is $\left|1\right\rangle$:
$$ \left|abc\right\rangle \rightarrow \begin{cases} \left|bac\right\rangle~~\text{if}~c=1 \cr \left|abc\right\rangle~~\text{if}~c=0 \end{cases}.$$In matrix form, the Fredkin gate is
$$ C_{\mathrm{SWAP}} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}. $$qc = QuantumCircuit(3)
qc.cswap(0,1,2)
qc.draw(output='mpl')
backend = Aer.get_backend('unitary_simulator')
job = execute(qc, backend)
result = job.result()
print(result.get_unitary(qc, decimals=3))
[[1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j] [0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j] [0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j] [0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j] [0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j] [0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j] [0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j] [0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j]]