# imports and plotting utility functions
%matplotlib inline
import warnings
import numpy as np
from sklearn.datasets import make_regression
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import ShuffleSplit
from sklearn.linear_model import Lasso
import seaborn as sns
from matplotlib import pylab as plt
import matplotlib as mpl
from statsmodels.regression.linear_model import OLS
warnings.simplefilter('ignore')
def plot_lr(true_coefs, est_coefs, pvals):
n_feat = len(est_coefs)
where_sign = pvals < 0.05
plt.figure(figsize=(15, 7))
plt.scatter(np.arange(X.shape[1]), true_coefs, color='black', label='true betas', alpha=0.5)
# print non-significant betas
plt.scatter(np.arange(X.shape[1]), est_coefs, color='red', label='estimated betas', alpha=0.5)
# print significant betas
axes = plt.gca()
y_max, _ = axes.get_ylim()
sign_y = np.sum(where_sign) * [y_max]
plt.scatter(np.arange(X.shape[1])[where_sign], sign_y, color='red', label='significant at p<0.05', s=150, marker=(5, 1), alpha=0.75, linewidth=3)
plt.xlabel('input variables')
#plt.xticks(np.arange(n_feat)[::2], (np.arange(n_feat) + 1)[::2])
plt.xticks(np.arange(n_feat), (np.arange(n_feat) + 1))
plt.grid(True)
plt.title('Linear regression', fontsize=16)
plt.legend(loc='upper right')
def plot_regr_paths(coefs, accs, nonzeros, C_grid):
n_cols = 2
n_rows = 1
n_verticals = len(coefs)
n_feat = coefs.shape[1]
print(n_feat)
my_palette = np.array([
'#F47D7D', '#FBEF69', '#98E466', '#000000',
'#A7794F', '#CCCCCC', '#85359C', '#FF9300', '#FF0030', 'grey', 'blue', 'salmon', '#4BBCF6',
'green', 'tomato', 'darkred', 'black', 'cyan', 'lime'
])
my_colors = np.array(['???????'] * coefs.shape[-1])
i_col = 0
new_grp_pts_x = []
new_grp_pts_y = []
new_grp_pts_col = []
new_grp_pts_total = []
for i_vertical, (params, acc, C) in enumerate(zip(
coefs, accs, C_grid)):
b_notset = my_colors == '???????'
b_nonzeros = params == 0
b_coefs_of_new_grp = np.logical_and(b_notset, b_nonzeros)
if np.sum(b_coefs_of_new_grp) > 0:
i_col += 1
# we found a new subset that became 0
for new_i in np.where(b_coefs_of_new_grp == True)[0]:
# color all coefficients of the current group
cur_col = my_palette[i_col]
my_colors[new_i] = cur_col
new_grp_pts_x.append(C)
new_grp_pts_y.append(acc)
new_grp_pts_col.append(cur_col)
new_grp_pts_total.append(np.sum(b_nonzeros))
X_colnames = np.arange(0, n_feat + 1, 1)
subplot_xlabel = '#nonzero coefficients'
f, axarr = plt.subplots(nrows=n_rows, ncols=n_cols,
figsize=(15, 10), facecolor='white')
t, i_col = 0, 0
for i_line in range(X.shape[-1]):
axarr[i_col].plot(np.log10(C_grid),
coefs[:, i_line], label=X_colnames[i_line],
color=my_colors[i_line], linewidth=1.5)
axarr[i_col].set_xlabel(subplot_xlabel, fontsize=10)
axarr[i_col].legend(loc='lower left', fontsize=8.5, markerscale=10)
axarr[0].grid(True)
axarr[0].set_title('LASSO: Groups of selected variables', fontsize=16)
axarr[0].set_xticks(np.log10(C_grid))
axarr[0].set_xticklabels(nonzeros)
axarr[1].plot(np.arange(len(accs)), accs, color='#000000',
linewidth=3)
axarr[1].set_ylim(0.0, 1.05)
axarr[1].grid(True)
axarr[1].set_xticks(np.arange(n_verticals))
axarr[1].set_xticklabels(nonzeros)
axarr[1].set_xlabel(subplot_xlabel, fontsize=10)
axarr[1].set_title('LASSO: Out-of-sample accuracy ($R^2$ score)', fontsize=16)
return my_colors
def clip_pvals(pvals):
pvals[pvals == 0] = np.finfo(pvals.dtype).eps
return pvals
# statistical helper functions
def compute_Lasso_regpath(X, y, C_grid):
coef_list2 = []
acc_list2 = []
nonzero_list2 = []
for i_step, my_C in enumerate(C_grid):
sample_accs = []
sample_coef = []
for i_subsample in range(100):
folder = ShuffleSplit(n_splits=100, test_size=0.1,
random_state=i_subsample)
train_inds, test_inds = next(iter(folder.split(X)))
clf = Lasso(alpha=my_C, random_state=i_subsample)
clf.fit(X[train_inds, :], y[train_inds])
acc = clf.score(X[test_inds, :], y[test_inds])
sample_accs.append(acc)
sample_coef.append(clf.coef_)
mean_coefs = np.mean(np.array(sample_coef), axis=0)
coef_list2.append(mean_coefs)
acc_list2.append(np.mean(sample_accs))
notzero = np.count_nonzero(mean_coefs)
print("alpha: %.4f acc: %.2f active_coefs: %i" % (my_C, acc, notzero))
nonzero_list2.append(notzero)
return np.array(coef_list2), np.array(acc_list2), np.array(nonzero_list2)
def infpred_plot(unbiased_acc_list, lr_pvalues, coef_list, feat_names, acc_offset=0.1, annot_ha='center'):
fig = plt.figure(figsize=(9, 9))
sorter = unbiased_acc_list.argsort()[::-1]
colors = plt.cm.viridis_r(np.linspace(0.1, 0.9, len(sorter)))
unique_nonzero = {}
size = 20
for ii, idx in enumerate(sorter):
acc = unbiased_acc_list[idx]
non_zero = np.where(coef_list[idx])[0]
if tuple(non_zero) not in unique_nonzero:
unique_nonzero[tuple(non_zero)] = non_zero
else:
print('skipping', ii)
continue
xx = -np.log10(lr_pvalues[non_zero])
this_acc = np.array([acc] * len(xx))
size *= 0.9
plt.plot(xx + np.random.sample(len(xx)) * 0.01,
this_acc,
marker='o', linestyle='None',
color=colors[ii], zorder=-ii,
alpha=0.9,
mfc='None',
mew=1,
markersize=size)
if ii == 0:
psorter = np.argsort(lr_pvalues)
feat_names_ = [feat_names[kk] for kk in psorter]
xx2 = -np.log10(lr_pvalues[psorter])
for jj, (this_name, this_x) in enumerate(zip(feat_names_, xx2)):
print(this_x)
plt.annotate(
this_name, xy=(this_x, acc + acc_offset),
xycoords='data', rotation=90,
verticalalignment='bottom' if jj % 2 else 'top',
ha=annot_ha,
fontsize=14)
plt.axvline(
-np.log10(0.05), color='red', linestyle='--', linewidth=3)
plt.annotate('p < 0.05', xy=(-np.log10(0.045), 0.03), color='red', fontsize=16)
plt.xlabel(r'significance [$-log_{10}(p)$]', fontsize=20, fontweight=150)
plt.ylabel(r'prediction [$R^2$]', fontsize=20, fontweight=150)
plt.ylim(0, 1)
plt.grid(True)
ax = plt.gca()
ax.set_yticks([0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1])
ax.set_yticks(np.arange(0.01, 1, 0.01), minor=True);
return fig
simulations = []
def run_lasso(X, y, comment, n_samples, n_feat,
n_feat_relevant, C_grid):
# ordinary least squares
model = OLS(y, X)
res = model.fit()
lr_coefs = res.params
lr_pvalues = clip_pvals(res.pvalues)
# compute Lasso regularization paths
coef_list, acc_list, nonzero_list = compute_Lasso_regpath(X, y, C_grid)
plot_lr(true_coefs, lr_coefs, lr_pvalues)
path_colors = plot_regr_paths(coef_list, acc_list, nonzero_list, C_grid)
feat_names = ['' for _ in range(X.shape[1])]
infpred_plot(unbiased_acc_list=acc_list,
lr_pvalues=lr_pvalues, coef_list=coef_list,
feat_names=feat_names, acc_offset=0.1)
simulations.append(
dict(X=X, y=y, comment=comment,
n_samples=n_samples, n_feat=n_feat,
n_feat_relevant=n_feat_relevant,
pvals=lr_pvalues,
coefs=coef_list,
acc_list=acc_list))
comment = "dataset: 10/40 variables relevant, linear ground truth, some noise"
rs = np.random.RandomState(1)
n_samples = 100
n_feat = 40
n_feat_relevant = 10
epsilon = rs.randn(n_samples)
true_coefs = rs.randn(n_feat)
true_coefs[n_feat_relevant:] = 0
X = rs.randn(n_samples, n_feat)
y = (true_coefs * X).sum(axis=1) + epsilon
C_grid = np.logspace(-2, 0.5, 25)
run_lasso(X, y, comment, n_samples, n_feat,
n_feat_relevant, C_grid=C_grid)
alpha: 0.0100 acc: 0.57 active_coefs: 40 alpha: 0.0127 acc: 0.60 active_coefs: 40 alpha: 0.0162 acc: 0.64 active_coefs: 40 alpha: 0.0205 acc: 0.68 active_coefs: 40 alpha: 0.0261 acc: 0.72 active_coefs: 40 alpha: 0.0332 acc: 0.76 active_coefs: 40 alpha: 0.0422 acc: 0.79 active_coefs: 40 alpha: 0.0536 acc: 0.80 active_coefs: 40 alpha: 0.0681 acc: 0.80 active_coefs: 40 alpha: 0.0866 acc: 0.80 active_coefs: 39 alpha: 0.1101 acc: 0.80 active_coefs: 32 alpha: 0.1399 acc: 0.78 active_coefs: 24 alpha: 0.1778 acc: 0.76 active_coefs: 19 alpha: 0.2260 acc: 0.70 active_coefs: 15 alpha: 0.2873 acc: 0.62 active_coefs: 13 alpha: 0.3652 acc: 0.55 active_coefs: 7 alpha: 0.4642 acc: 0.44 active_coefs: 6 alpha: 0.5900 acc: 0.32 active_coefs: 6 alpha: 0.7499 acc: 0.22 active_coefs: 4 alpha: 0.9532 acc: 0.04 active_coefs: 2 alpha: 1.2115 acc: -0.19 active_coefs: 2 alpha: 1.5399 acc: -0.22 active_coefs: 1 alpha: 1.9573 acc: -0.22 active_coefs: 0 alpha: 2.4879 acc: -0.22 active_coefs: 0 alpha: 3.1623 acc: -0.22 active_coefs: 0 40 17.8985881323 13.7654376568 10.6001082352 8.11300856465 5.54904001773 5.17676654541 3.04473973171 1.81241157401 1.57344918174 1.39634148784 1.30972257689 1.15425855311 0.902375816637 0.833811642171 0.823161052389 0.72767976368 0.727464102672 0.655842393759 0.648187468074 0.636416192402 0.58041470526 0.559717763899 0.547163763916 0.531714903269 0.504594418577 0.495013119587 0.484304813059 0.350920961614 0.350231694279 0.30542518911 0.304754254536 0.286598938232 0.223505333064 0.207928336501 0.144791264036 0.141352670361 0.134192620259 0.110019292558 0.0494182670069 0.0238859141628 skipping 4 skipping 5 skipping 7 skipping 8 skipping 9 skipping 11 skipping 12 skipping 13 skipping 17 skipping 20 skipping 22 skipping 23
comment = "dataset: 20/40 variables relevant, linear ground truth, some noise"
rs = np.random.RandomState(1)
n_samples = 100
n_feat = 40
n_feat_relevant = 20
epsilon = rs.randn(n_samples)
true_coefs = rs.randn(n_feat)
true_coefs[n_feat_relevant:] = 0
X = rs.randn(n_samples, n_feat)
y = (true_coefs * X).sum(axis=1) + epsilon
C_grid = np.logspace(-2, 0.5, 25)
run_lasso(X, y, comment, n_samples, n_feat,
n_feat_relevant, C_grid=C_grid)
alpha: 0.0100 acc: 0.85 active_coefs: 40 alpha: 0.0127 acc: 0.86 active_coefs: 40 alpha: 0.0162 acc: 0.87 active_coefs: 40 alpha: 0.0205 acc: 0.87 active_coefs: 40 alpha: 0.0261 acc: 0.88 active_coefs: 40 alpha: 0.0332 acc: 0.89 active_coefs: 40 alpha: 0.0422 acc: 0.91 active_coefs: 40 alpha: 0.0536 acc: 0.91 active_coefs: 40 alpha: 0.0681 acc: 0.91 active_coefs: 38 alpha: 0.0866 acc: 0.90 active_coefs: 36 alpha: 0.1101 acc: 0.88 active_coefs: 35 alpha: 0.1399 acc: 0.85 active_coefs: 33 alpha: 0.1778 acc: 0.79 active_coefs: 28 alpha: 0.2260 acc: 0.71 active_coefs: 26 alpha: 0.2873 acc: 0.63 active_coefs: 25 alpha: 0.3652 acc: 0.52 active_coefs: 22 alpha: 0.4642 acc: 0.43 active_coefs: 19 alpha: 0.5900 acc: 0.31 active_coefs: 16 alpha: 0.7499 acc: 0.18 active_coefs: 11 alpha: 0.9532 acc: 0.00 active_coefs: 8 alpha: 1.2115 acc: -0.07 active_coefs: 7 alpha: 1.5399 acc: -0.07 active_coefs: 2 alpha: 1.9573 acc: -0.04 active_coefs: 0 alpha: 2.4879 acc: -0.04 active_coefs: 0 alpha: 3.1623 acc: -0.04 active_coefs: 0 40 19.2001348711 18.1041494893 17.8985881323 13.9890792566 13.7654376568 12.0549348919 10.6001082352 10.283474044 8.11300856465 7.243931239 5.54904001773 5.17676654541 5.1181412403 3.79538075164 3.04473973171 1.39634148784 1.30972257689 1.15425855311 1.03145382869 0.833811642171 0.72767976368 0.727464102672 0.655842393759 0.648187468074 0.636416192402 0.547163763916 0.531714903269 0.484304813059 0.403881475164 0.350920961614 0.350231694279 0.30542518911 0.304754254536 0.286598938232 0.223505333064 0.144791264036 0.141352670361 0.134192620259 0.0494182670069 0.0238859141628 skipping 1 skipping 3 skipping 4 skipping 6 skipping 7 skipping 8 skipping 9 skipping 23 skipping 24
comment = "dataset: 30/40 variables relevant, linear ground truth, some noise"
rs = np.random.RandomState(1)
n_samples = 100
n_feat = 40
n_feat_relevant = 30
epsilon = rs.randn(n_samples)
true_coefs = rs.randn(n_feat)
true_coefs[n_feat_relevant:] = 0
X = rs.randn(n_samples, n_feat)
y = (true_coefs * X).sum(axis=1) + epsilon
C_grid = np.logspace(-2, 0.5, 25)
run_lasso(X, y, comment, n_samples, n_feat,
n_feat_relevant, C_grid=C_grid)
alpha: 0.0100 acc: 0.95 active_coefs: 40 alpha: 0.0127 acc: 0.95 active_coefs: 40 alpha: 0.0162 acc: 0.95 active_coefs: 40 alpha: 0.0205 acc: 0.95 active_coefs: 40 alpha: 0.0261 acc: 0.96 active_coefs: 40 alpha: 0.0332 acc: 0.96 active_coefs: 40 alpha: 0.0422 acc: 0.96 active_coefs: 40 alpha: 0.0536 acc: 0.96 active_coefs: 40 alpha: 0.0681 acc: 0.96 active_coefs: 38 alpha: 0.0866 acc: 0.96 active_coefs: 38 alpha: 0.1101 acc: 0.95 active_coefs: 37 alpha: 0.1399 acc: 0.93 active_coefs: 37 alpha: 0.1778 acc: 0.90 active_coefs: 34 alpha: 0.2260 acc: 0.86 active_coefs: 33 alpha: 0.2873 acc: 0.81 active_coefs: 31 alpha: 0.3652 acc: 0.75 active_coefs: 29 alpha: 0.4642 acc: 0.68 active_coefs: 28 alpha: 0.5900 acc: 0.58 active_coefs: 26 alpha: 0.7499 acc: 0.43 active_coefs: 23 alpha: 0.9532 acc: 0.22 active_coefs: 18 alpha: 1.2115 acc: -0.06 active_coefs: 14 alpha: 1.5399 acc: -0.25 active_coefs: 10 alpha: 1.9573 acc: -0.36 active_coefs: 5 alpha: 2.4879 acc: -0.45 active_coefs: 1 alpha: 3.1623 acc: -0.45 active_coefs: 0 40 27.0435011033 23.6884396179 19.2837128916 19.2001348711 18.1041494893 17.8985881323 15.6634560403 14.1567924463 13.9890792566 13.7654376568 12.0549348919 11.3353540548 10.6001082352 10.283474044 9.45165943022 8.7061775904 8.11300856465 7.243931239 5.54904001773 5.17676654541 5.1181412403 4.62032233443 3.79538075164 3.04473973171 1.39634148784 1.15425855311 1.03145382869 0.833811642171 0.727464102672 0.648187468074 0.636416192402 0.531714903269 0.454963495849 0.403881475164 0.304754254536 0.286598938232 0.223505333064 0.144791264036 0.134192620259 0.049418267007 skipping 1 skipping 2 skipping 3 skipping 4 skipping 5 skipping 6 skipping 7 skipping 9
comment = "dataset: 40/40 variables relevant, linear ground truth, some noise"
rs = np.random.RandomState(1)
n_samples = 100
n_feat = 40
n_feat_relevant = 40
epsilon = rs.randn(n_samples)
true_coefs = rs.randn(n_feat)
true_coefs[n_feat_relevant:] = 0
X = rs.randn(n_samples, n_feat)
y = (true_coefs * X).sum(axis=1) + epsilon
C_grid = np.logspace(-2, 0.5, 25)
run_lasso(X, y, comment, n_samples, n_feat,
n_feat_relevant, C_grid=C_grid)
alpha: 0.0100 acc: 0.97 active_coefs: 40 alpha: 0.0127 acc: 0.97 active_coefs: 40 alpha: 0.0162 acc: 0.97 active_coefs: 40 alpha: 0.0205 acc: 0.97 active_coefs: 40 alpha: 0.0261 acc: 0.97 active_coefs: 40 alpha: 0.0332 acc: 0.98 active_coefs: 40 alpha: 0.0422 acc: 0.98 active_coefs: 40 alpha: 0.0536 acc: 0.98 active_coefs: 40 alpha: 0.0681 acc: 0.98 active_coefs: 40 alpha: 0.0866 acc: 0.97 active_coefs: 40 alpha: 0.1101 acc: 0.96 active_coefs: 40 alpha: 0.1399 acc: 0.94 active_coefs: 40 alpha: 0.1778 acc: 0.92 active_coefs: 40 alpha: 0.2260 acc: 0.88 active_coefs: 38 alpha: 0.2873 acc: 0.82 active_coefs: 36 alpha: 0.3652 acc: 0.75 active_coefs: 36 alpha: 0.4642 acc: 0.68 active_coefs: 33 alpha: 0.5900 acc: 0.59 active_coefs: 30 alpha: 0.7499 acc: 0.47 active_coefs: 29 alpha: 0.9532 acc: 0.30 active_coefs: 21 alpha: 1.2115 acc: 0.09 active_coefs: 17 alpha: 1.5399 acc: -0.11 active_coefs: 14 alpha: 1.9573 acc: -0.25 active_coefs: 8 alpha: 2.4879 acc: -0.31 active_coefs: 4 alpha: 3.1623 acc: -0.31 active_coefs: 0 40 27.0435011033 23.6884396179 19.4601541668 19.2837128916 19.2001348711 18.1041494893 17.8985881323 15.6634560403 15.0310351063 14.1567924463 13.9890792566 13.7654376568 12.0549348919 11.3353540548 10.6001082352 10.283474044 9.45165943022 8.7061775904 8.11300856465 7.243931239 7.17773431258 6.08559747734 5.54904001773 5.45082906449 5.29573007252 5.25207388611 5.17676654541 5.1181412403 4.62032233443 3.79538075164 3.04473973171 2.42409762423 2.38320513046 1.39634148784 1.03145382869 0.636416192402 0.454963495849 0.403881475164 0.3995473636 0.304754254536 skipping 1 skipping 2 skipping 3 skipping 4 skipping 5 skipping 6 skipping 7 skipping 8 skipping 9 skipping 10 skipping 11 skipping 12 skipping 15
comment = "dataset: 10/40 variables relevant, linear ground truth, some noise"
rs = np.random.RandomState(1)
n_samples = 1000
n_feat = 40
n_feat_relevant = 10
epsilon = rs.randn(n_samples)
true_coefs = rs.randn(n_feat)
true_coefs[n_feat_relevant:] = 0
X = rs.randn(n_samples, n_feat)
y = (true_coefs * X).sum(axis=1) + epsilon
C_grid = np.logspace(-2, 0.5, 25)
run_lasso(X, y, comment, n_samples, n_feat,
n_feat_relevant, C_grid=C_grid)
alpha: 0.0100 acc: 0.93 active_coefs: 40 alpha: 0.0127 acc: 0.93 active_coefs: 40 alpha: 0.0162 acc: 0.94 active_coefs: 40 alpha: 0.0205 acc: 0.94 active_coefs: 40 alpha: 0.0261 acc: 0.94 active_coefs: 38 alpha: 0.0332 acc: 0.94 active_coefs: 36 alpha: 0.0422 acc: 0.94 active_coefs: 28 alpha: 0.0536 acc: 0.94 active_coefs: 20 alpha: 0.0681 acc: 0.93 active_coefs: 16 alpha: 0.0866 acc: 0.93 active_coefs: 12 alpha: 0.1101 acc: 0.93 active_coefs: 11 alpha: 0.1399 acc: 0.92 active_coefs: 10 alpha: 0.1778 acc: 0.91 active_coefs: 10 alpha: 0.2260 acc: 0.90 active_coefs: 9 alpha: 0.2873 acc: 0.88 active_coefs: 8 alpha: 0.3652 acc: 0.86 active_coefs: 8 alpha: 0.4642 acc: 0.81 active_coefs: 8 alpha: 0.5900 acc: 0.75 active_coefs: 7 alpha: 0.7499 acc: 0.67 active_coefs: 5 alpha: 0.9532 acc: 0.56 active_coefs: 4 alpha: 1.2115 acc: 0.41 active_coefs: 3 alpha: 1.5399 acc: 0.19 active_coefs: 3 alpha: 1.9573 acc: 0.09 active_coefs: 1 alpha: 2.4879 acc: -0.00 active_coefs: 0 alpha: 3.1623 acc: -0.00 active_coefs: 0 40 266.203836749 257.580615163 123.564764097 110.581643142 64.6911966587 58.0763677229 44.5382808274 15.6535597745 12.4367201993 6.63051580291 1.6133005526 1.29300187988 1.14848609089 1.06006598496 0.817489578238 0.642098922498 0.493990500501 0.453427787712 0.422264239499 0.382988313694 0.371271160633 0.365409504085 0.349212515172 0.322311370704 0.309894806882 0.303032990969 0.301528778114 0.272578017003 0.270285843655 0.251741956379 0.247745297292 0.19677190609 0.186386617028 0.144977583921 0.0605753890562 0.0594680417561 0.0292018341059 0.0286690261293 0.0196918758999 0.000825533770864 skipping 3 skipping 4 skipping 5 skipping 12 skipping 15 skipping 16 skipping 21 skipping 24
comment = "dataset: 20/40 variables relevant, linear ground truth, some noise"
rs = np.random.RandomState(1)
n_samplebs = 1000
n_feat = 40
n_feat_relevant = 20
epsilon = rs.randn(n_samples)
true_coefs = rs.randn(n_feat)
true_coefs[n_feat_relevant:] = 0
X = rs.randn(n_samples, n_feat)
y = (true_coefs * X).sum(axis=1) + epsilon
C_grid = np.logspace(-2, 0.5, 25)
run_lasso(X, y, comment, n_samples, n_feat,
n_feat_relevant, C_grid=C_grid)
alpha: 0.0100 acc: 0.96 active_coefs: 40 alpha: 0.0127 acc: 0.96 active_coefs: 40 alpha: 0.0162 acc: 0.97 active_coefs: 40 alpha: 0.0205 acc: 0.97 active_coefs: 40 alpha: 0.0261 acc: 0.97 active_coefs: 38 alpha: 0.0332 acc: 0.97 active_coefs: 37 alpha: 0.0422 acc: 0.97 active_coefs: 35 alpha: 0.0536 acc: 0.97 active_coefs: 29 alpha: 0.0681 acc: 0.97 active_coefs: 24 alpha: 0.0866 acc: 0.96 active_coefs: 22 alpha: 0.1101 acc: 0.96 active_coefs: 21 alpha: 0.1399 acc: 0.96 active_coefs: 21 alpha: 0.1778 acc: 0.95 active_coefs: 19 alpha: 0.2260 acc: 0.94 active_coefs: 19 alpha: 0.2873 acc: 0.93 active_coefs: 18 alpha: 0.3652 acc: 0.90 active_coefs: 17 alpha: 0.4642 acc: 0.86 active_coefs: 17 alpha: 0.5900 acc: 0.81 active_coefs: 17 alpha: 0.7499 acc: 0.73 active_coefs: 12 alpha: 0.9532 acc: 0.61 active_coefs: 11 alpha: 1.2115 acc: 0.43 active_coefs: 10 alpha: 1.5399 acc: 0.19 active_coefs: 6 alpha: 1.9573 acc: 0.08 active_coefs: 1 alpha: 2.4879 acc: -0.00 active_coefs: 1 alpha: 3.1623 acc: -0.00 active_coefs: 0 40 306.70250279 266.203836749 259.985298685 257.580615163 251.750476271 227.390605979 216.542219335 189.032138743 169.767726896 123.564764097 110.581643142 83.4078299178 64.6911966587 62.3908395227 58.0763677229 44.5382808274 15.6535597745 12.4367201993 10.5126810224 6.63051580291 1.6133005526 1.29300187988 1.14848609089 0.817489578238 0.642098922498 0.453427787712 0.422264239499 0.382988313694 0.371271160633 0.365409504085 0.349212515172 0.309894806882 0.301528778114 0.272578017003 0.251741956379 0.19677190609 0.144977583921 0.0594680417562 0.0292018341059 0.0286690261292 skipping 1 skipping 2 skipping 3 skipping 11 skipping 13 skipping 16 skipping 17 skipping 23
comment = "dataset: 30/40 variables relevant, linear ground truth, some noise"
rs = np.random.RandomState(1)
n_samples = 1000
n_feat = 40
n_feat_relevant = 30
epsilon = rs.randn(n_samples)
true_coefs = rs.randn(n_feat)
true_coefs[n_feat_relevant:] = 0
X = rs.randn(n_samples, n_feat)
y = (true_coefs * X).sum(axis=1) + epsilon
C_grid = np.logspace(-2, 0.5, 25)
run_lasso(X, y, comment, n_samples, n_feat,
n_feat_relevant, C_grid=C_grid)
alpha: 0.0100 acc: 0.97 active_coefs: 40 alpha: 0.0127 acc: 0.97 active_coefs: 40 alpha: 0.0162 acc: 0.97 active_coefs: 40 alpha: 0.0205 acc: 0.97 active_coefs: 40 alpha: 0.0261 acc: 0.97 active_coefs: 40 alpha: 0.0332 acc: 0.97 active_coefs: 39 alpha: 0.0422 acc: 0.97 active_coefs: 37 alpha: 0.0536 acc: 0.97 active_coefs: 35 alpha: 0.0681 acc: 0.97 active_coefs: 32 alpha: 0.0866 acc: 0.97 active_coefs: 31 alpha: 0.1101 acc: 0.97 active_coefs: 30 alpha: 0.1399 acc: 0.96 active_coefs: 30 alpha: 0.1778 acc: 0.95 active_coefs: 28 alpha: 0.2260 acc: 0.94 active_coefs: 28 alpha: 0.2873 acc: 0.92 active_coefs: 26 alpha: 0.3652 acc: 0.90 active_coefs: 24 alpha: 0.4642 acc: 0.85 active_coefs: 23 alpha: 0.5900 acc: 0.80 active_coefs: 19 alpha: 0.7499 acc: 0.72 active_coefs: 15 alpha: 0.9532 acc: 0.62 active_coefs: 13 alpha: 1.2115 acc: 0.44 active_coefs: 12 alpha: 1.5399 acc: 0.23 active_coefs: 7 alpha: 1.9573 acc: 0.10 active_coefs: 3 alpha: 2.4879 acc: 0.01 active_coefs: 1 alpha: 3.1623 acc: -0.00 active_coefs: 0 40 306.70250279 266.203836749 259.985298685 257.580615163 251.750476271 232.177575665 227.390605979 216.542219335 189.032138743 169.767726896 123.564764097 110.581643142 83.4078299178 78.3958987363 76.2136424952 64.6911966587 62.3908395227 58.0763677229 53.6639002678 52.6305743525 49.951198593 44.5382808274 21.9049462821 15.6535597745 15.6535597745 14.4524983925 12.4367201993 10.5126810224 6.63051580291 1.6133005526 1.14848609089 0.817489578238 0.542505420164 0.365409504085 0.301528778114 0.251741956379 0.19677190609 0.144977583921 0.0594680417562 0.0292018341059 skipping 1 skipping 2 skipping 3 skipping 4 skipping 11 skipping 13
comment = "dataset: 40/40 variables relevant, linear ground truth, some noise"
rs = np.random.RandomState(1)
n_samples = 1000
n_feat = 40
n_feat_relevant = 40
epsilon = rs.randn(n_samples)
true_coefs = rs.randn(n_feat)
true_coefs[n_feat_relevant:] = 0
X = rs.randn(n_samples, n_feat)
y = (true_coefs * X).sum(axis=1) + epsilon
C_grid = np.logspace(-2, 0.5, 25)
run_lasso(X, y, comment, n_samples, n_feat,
n_feat_relevant, C_grid=C_grid)
alpha: 0.0100 acc: 0.98 active_coefs: 40 alpha: 0.0127 acc: 0.98 active_coefs: 40 alpha: 0.0162 acc: 0.98 active_coefs: 40 alpha: 0.0205 acc: 0.98 active_coefs: 40 alpha: 0.0261 acc: 0.98 active_coefs: 40 alpha: 0.0332 acc: 0.98 active_coefs: 40 alpha: 0.0422 acc: 0.98 active_coefs: 40 alpha: 0.0536 acc: 0.98 active_coefs: 40 alpha: 0.0681 acc: 0.98 active_coefs: 39 alpha: 0.0866 acc: 0.97 active_coefs: 39 alpha: 0.1101 acc: 0.97 active_coefs: 39 alpha: 0.1399 acc: 0.96 active_coefs: 39 alpha: 0.1778 acc: 0.95 active_coefs: 39 alpha: 0.2260 acc: 0.94 active_coefs: 36 alpha: 0.2873 acc: 0.92 active_coefs: 34 alpha: 0.3652 acc: 0.89 active_coefs: 31 alpha: 0.4642 acc: 0.85 active_coefs: 29 alpha: 0.5900 acc: 0.79 active_coefs: 26 alpha: 0.7499 acc: 0.71 active_coefs: 21 alpha: 0.9532 acc: 0.61 active_coefs: 16 alpha: 1.2115 acc: 0.45 active_coefs: 15 alpha: 1.5399 acc: 0.28 active_coefs: 9 alpha: 1.9573 acc: 0.12 active_coefs: 6 alpha: 2.4879 acc: 0.01 active_coefs: 2 alpha: 3.1623 acc: -0.00 active_coefs: 0 40 306.70250279 266.203836749 259.985298685 257.580615163 251.750476271 235.534081448 232.177575665 227.390605979 216.542219335 199.38808419 189.032138743 169.767726896 123.564764097 110.581643142 83.4078299178 81.1335521336 78.3958987363 76.2136424952 64.6911966587 62.3908395227 58.0763677229 53.6639002678 52.6305743525 49.951198593 44.5382808274 44.0642093481 38.0245732995 31.6565063265 21.9049462821 15.6535597745 15.6535597745 15.6535597745 14.4524983925 12.4367201993 10.5126810224 8.53876677309 7.98828655843 6.89162459463 6.63051580291 0.542505420164 skipping 1 skipping 2 skipping 3 skipping 4 skipping 5 skipping 6 skipping 7 skipping 9 skipping 10 skipping 11 skipping 12
comment = "dataset: 10/40 variables relevant, linear ground truth, some noise"
rs = np.random.RandomState(1)
n_samples = 100
n_feat = 40
n_feat_relevant = 10
true_coefs = rs.randn(n_feat)
true_coefs[n_feat_relevant:] = 0
X = rs.randn(n_samples, n_feat)
y = (true_coefs * X).sum(axis=1)
C_grid = np.logspace(-3, 0.5, 25)
run_lasso(X, y, comment, n_samples, n_feat,
n_feat_relevant, C_grid=C_grid)
alpha: 0.0010 acc: 1.00 active_coefs: 10 alpha: 0.0014 acc: 1.00 active_coefs: 10 alpha: 0.0020 acc: 1.00 active_coefs: 10 alpha: 0.0027 acc: 1.00 active_coefs: 10 alpha: 0.0038 acc: 1.00 active_coefs: 10 alpha: 0.0054 acc: 1.00 active_coefs: 10 alpha: 0.0075 acc: 1.00 active_coefs: 10 alpha: 0.0105 acc: 1.00 active_coefs: 10 alpha: 0.0147 acc: 1.00 active_coefs: 10 alpha: 0.0205 acc: 1.00 active_coefs: 10 alpha: 0.0287 acc: 1.00 active_coefs: 10 alpha: 0.0402 acc: 1.00 active_coefs: 10 alpha: 0.0562 acc: 1.00 active_coefs: 10 alpha: 0.0787 acc: 0.99 active_coefs: 10 alpha: 0.1101 acc: 0.99 active_coefs: 10 alpha: 0.1540 acc: 0.98 active_coefs: 10 alpha: 0.2154 acc: 0.96 active_coefs: 10 alpha: 0.3014 acc: 0.93 active_coefs: 10 alpha: 0.4217 acc: 0.89 active_coefs: 8 alpha: 0.5900 acc: 0.80 active_coefs: 7 alpha: 0.8254 acc: 0.68 active_coefs: 6 alpha: 1.1548 acc: 0.47 active_coefs: 5 alpha: 1.6156 acc: 0.18 active_coefs: 3 alpha: 2.2603 acc: -0.05 active_coefs: 1 alpha: 3.1623 acc: -0.05 active_coefs: 0 40 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 1.61739026323 0.879563955841 0.790306054233 0.778937583676 0.725370757479 0.635983280364 0.557566256501 0.489958458313 0.406985390651 0.375985990843 0.375406530898 0.359171519063 0.29825310897 0.29289624102 0.279531275712 0.276687594927 0.275025663466 0.26829732566 0.243293378855 0.173644697436 0.129666046034 0.111371440451 0.110064425583 0.0834983032796 0.0584021802216 0.0480890142989 0.0434083446419 0.0309774591073 0.0270615649803 0.022174180266 skipping 1 skipping 2 skipping 3 skipping 4 skipping 5 skipping 6 skipping 7 skipping 8 skipping 9 skipping 10 skipping 11 skipping 12 skipping 13 skipping 14 skipping 15 skipping 16 skipping 17
comment = "dataset: 20/40 variables relevant, linear ground truth, some noise"
rs = np.random.RandomState(1)
n_samples = 100
n_feat = 40
n_feat_relevant = 20
true_coefs = rs.randn(n_feat)
true_coefs[n_feat_relevant:] = 0
X = rs.randn(n_samples, n_feat)
y = (true_coefs * X).sum(axis=1)
C_grid = np.logspace(-3, 0.5, 25)
run_lasso(X, y, comment, n_samples, n_feat,
n_feat_relevant, C_grid=C_grid)
alpha: 0.0010 acc: 1.00 active_coefs: 25 alpha: 0.0014 acc: 1.00 active_coefs: 24 alpha: 0.0020 acc: 1.00 active_coefs: 24 alpha: 0.0027 acc: 1.00 active_coefs: 24 alpha: 0.0038 acc: 1.00 active_coefs: 24 alpha: 0.0054 acc: 1.00 active_coefs: 24 alpha: 0.0075 acc: 1.00 active_coefs: 24 alpha: 0.0105 acc: 1.00 active_coefs: 24 alpha: 0.0147 acc: 1.00 active_coefs: 24 alpha: 0.0205 acc: 1.00 active_coefs: 24 alpha: 0.0287 acc: 1.00 active_coefs: 24 alpha: 0.0402 acc: 1.00 active_coefs: 22 alpha: 0.0562 acc: 1.00 active_coefs: 23 alpha: 0.0787 acc: 0.99 active_coefs: 23 alpha: 0.1101 acc: 0.98 active_coefs: 24 alpha: 0.1540 acc: 0.97 active_coefs: 24 alpha: 0.2154 acc: 0.94 active_coefs: 22 alpha: 0.3014 acc: 0.90 active_coefs: 20 alpha: 0.4217 acc: 0.83 active_coefs: 17 alpha: 0.5900 acc: 0.69 active_coefs: 14 alpha: 0.8254 acc: 0.39 active_coefs: 13 alpha: 1.1548 acc: 0.00 active_coefs: 12 alpha: 1.6156 acc: -0.69 active_coefs: 7 alpha: 2.2603 acc: -1.09 active_coefs: 2 alpha: 3.1623 acc: -1.15 active_coefs: 0 40 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 0.886567580113 0.81864295227 0.734424735799 0.590584025429 0.51475776808 0.482841439493 0.474298849976 0.37474412589 0.344564335639 0.300080499518 0.220048996732 0.218906262707 0.19226119604 0.165193496298 0.112394696422 0.086732755483 0.0843127739337 0.0801228464764 0.0722840806337 0.0529873237368 skipping 2 skipping 3 skipping 4 skipping 5 skipping 6 skipping 7 skipping 8 skipping 9 skipping 10 skipping 13 skipping 15 skipping 16
comment = "dataset: 30/40 variables relevant, linear ground truth, some noise"
rs = np.random.RandomState(1)
n_samples = 100
n_feat = 40
n_feat_relevant = 30
true_coefs = rs.randn(n_feat)
true_coefs[n_feat_relevant:] = 0
X = rs.randn(n_samples, n_feat)
y = (true_coefs * X).sum(axis=1)
C_grid = np.logspace(-3, 0.5, 25)
run_lasso(X, y, comment, n_samples, n_feat,
n_feat_relevant, C_grid=C_grid)
alpha: 0.0010 acc: 1.00 active_coefs: 38 alpha: 0.0014 acc: 1.00 active_coefs: 38 alpha: 0.0020 acc: 1.00 active_coefs: 38 alpha: 0.0027 acc: 1.00 active_coefs: 38 alpha: 0.0038 acc: 1.00 active_coefs: 38 alpha: 0.0054 acc: 1.00 active_coefs: 38 alpha: 0.0075 acc: 1.00 active_coefs: 38 alpha: 0.0105 acc: 1.00 active_coefs: 38 alpha: 0.0147 acc: 1.00 active_coefs: 38 alpha: 0.0205 acc: 1.00 active_coefs: 38 alpha: 0.0287 acc: 0.99 active_coefs: 38 alpha: 0.0402 acc: 0.99 active_coefs: 38 alpha: 0.0562 acc: 0.97 active_coefs: 38 alpha: 0.0787 acc: 0.95 active_coefs: 38 alpha: 0.1101 acc: 0.91 active_coefs: 37 alpha: 0.1540 acc: 0.83 active_coefs: 35 alpha: 0.2154 acc: 0.69 active_coefs: 35 alpha: 0.3014 acc: 0.50 active_coefs: 34 alpha: 0.4217 acc: 0.23 active_coefs: 28 alpha: 0.5900 acc: -0.25 active_coefs: 23 alpha: 0.8254 acc: -0.74 active_coefs: 20 alpha: 1.1548 acc: -0.97 active_coefs: 17 alpha: 1.6156 acc: -1.18 active_coefs: 9 alpha: 2.2603 acc: -1.40 active_coefs: 2 alpha: 3.1623 acc: -1.45 active_coefs: 0 40 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 1.04259815874 0.542099041852 0.495852910005 0.49151759281 0.437191821452 0.219545825874 0.196203276168 0.143810303355 0.0920859920704 0.0708849363353 skipping 1 skipping 2 skipping 3 skipping 4 skipping 5 skipping 6 skipping 7 skipping 8 skipping 9 skipping 10 skipping 11 skipping 12 skipping 13 skipping 16
comment = "dataset: 40/40 variables relevant, linear ground truth, some noise"
rs = np.random.RandomState(1)
n_samples = 100
n_feat = 40
n_feat_relevant = 40
true_coefs = rs.randn(n_feat)
true_coefs[n_feat_relevant:] = 0
X = rs.randn(n_samples, n_feat)
y = (true_coefs * X).sum(axis=1)
C_grid = np.logspace(-3, 0.5, 25)
run_lasso(X, y, comment, n_samples, n_feat,
n_feat_relevant, C_grid=C_grid)
alpha: 0.0010 acc: 1.00 active_coefs: 40 alpha: 0.0014 acc: 1.00 active_coefs: 40 alpha: 0.0020 acc: 1.00 active_coefs: 40 alpha: 0.0027 acc: 1.00 active_coefs: 40 alpha: 0.0038 acc: 1.00 active_coefs: 40 alpha: 0.0054 acc: 1.00 active_coefs: 40 alpha: 0.0075 acc: 1.00 active_coefs: 40 alpha: 0.0105 acc: 1.00 active_coefs: 40 alpha: 0.0147 acc: 1.00 active_coefs: 40 alpha: 0.0205 acc: 1.00 active_coefs: 40 alpha: 0.0287 acc: 0.99 active_coefs: 40 alpha: 0.0402 acc: 0.98 active_coefs: 40 alpha: 0.0562 acc: 0.97 active_coefs: 40 alpha: 0.0787 acc: 0.94 active_coefs: 40 alpha: 0.1101 acc: 0.88 active_coefs: 40 alpha: 0.1540 acc: 0.81 active_coefs: 40 alpha: 0.2154 acc: 0.68 active_coefs: 38 alpha: 0.3014 acc: 0.53 active_coefs: 37 alpha: 0.4217 acc: 0.37 active_coefs: 35 alpha: 0.5900 acc: 0.13 active_coefs: 31 alpha: 0.8254 acc: -0.17 active_coefs: 27 alpha: 1.1548 acc: -0.21 active_coefs: 23 alpha: 1.6156 acc: -0.30 active_coefs: 11 alpha: 2.2603 acc: -0.51 active_coefs: 3 alpha: 3.1623 acc: -0.52 active_coefs: 0 40 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 skipping 1 skipping 2 skipping 3 skipping 4 skipping 5 skipping 6 skipping 7 skipping 8 skipping 9 skipping 10 skipping 11 skipping 12 skipping 13 skipping 14 skipping 15
comment = "abs / dataset: 10/40 relevant variables, including 5 pathological ones, linear ground truth, some noise"
rs = np.random.RandomState(1)
n_samples = 1000
n_feat = 40
n_feat_relevant = 10
epsilon = rs.randn(n_samples)
true_coefs = rs.randn(n_feat)
true_coefs[n_feat_relevant:] = 0
X = rs.randn(n_samples, n_feat)
X_abs5 = X.copy()
X_abs5[:, 0:6] = np.abs(X_abs5[:, 0:6]) # introduce pathological transformation, NOT captured by ground-truth model
y = (true_coefs * X_abs5).sum(axis=1) + epsilon
C_grid = np.logspace(-1.25, 0.25, 25)
run_lasso(X, y, comment, n_samples, n_feat,
n_feat_relevant, C_grid=C_grid)
alpha: 0.0562 acc: 0.47 active_coefs: 38 alpha: 0.0649 acc: 0.47 active_coefs: 38 alpha: 0.0750 acc: 0.47 active_coefs: 32 alpha: 0.0866 acc: 0.48 active_coefs: 28 alpha: 0.1000 acc: 0.48 active_coefs: 20 alpha: 0.1155 acc: 0.48 active_coefs: 16 alpha: 0.1334 acc: 0.48 active_coefs: 13 alpha: 0.1540 acc: 0.48 active_coefs: 8 alpha: 0.1778 acc: 0.48 active_coefs: 7 alpha: 0.2054 acc: 0.47 active_coefs: 5 alpha: 0.2371 acc: 0.47 active_coefs: 4 alpha: 0.2738 acc: 0.46 active_coefs: 4 alpha: 0.3162 acc: 0.45 active_coefs: 4 alpha: 0.3652 acc: 0.43 active_coefs: 4 alpha: 0.4217 acc: 0.41 active_coefs: 4 alpha: 0.4870 acc: 0.37 active_coefs: 4 alpha: 0.5623 acc: 0.33 active_coefs: 4 alpha: 0.6494 acc: 0.30 active_coefs: 4 alpha: 0.7499 acc: 0.27 active_coefs: 2 alpha: 0.8660 acc: 0.23 active_coefs: 2 alpha: 1.0000 acc: 0.18 active_coefs: 1 alpha: 1.1548 acc: 0.13 active_coefs: 1 alpha: 1.3335 acc: 0.05 active_coefs: 1 alpha: 1.5399 acc: -0.04 active_coefs: 1 alpha: 1.7783 acc: -0.04 active_coefs: 0 40 26.4383494167 10.3462209366 4.23466877222 2.78571500508 2.20846067323 1.18370072913 0.81815340767 0.788407715192 0.742723127962 0.709485761504 0.69292276907 0.627588808255 0.594158647105 0.566090925226 0.561877613573 0.48538106739 0.466614227898 0.433916655934 0.426898127196 0.399545782116 0.369619063469 0.365035125402 0.35338066123 0.346051523773 0.297972029669 0.294571646309 0.241003713854 0.170642232506 0.154803276805 0.154775808307 0.154184528639 0.11805336642 0.0915052577244 0.0757410600265 0.068502592059 0.0674567479775 0.0437747763522 0.0416921815627 0.0354366878206 0.0151945430138 skipping 4 skipping 11 skipping 12 skipping 13 skipping 14 skipping 15 skipping 16 skipping 17 skipping 19 skipping 21 skipping 22 skipping 23
### observation: 1/5 path. variables are significant, the same 1/5 path. (?) variables are selected as predictive
comment = "square root / dataset: 10/40 relevant variables, including 5 pathological ones, linear ground truth, some noise"
rs = np.random.RandomState(1)
n_samples = 1000
n_feat = 40
n_feat_relevant = 10
epsilon = rs.randn(n_samples)
true_coefs = rs.randn(n_feat)
true_coefs[n_feat_relevant:] = 0
X = rs.randn(n_samples, n_feat)
X_sqrt5 = X.copy()
signs = np.sign(X)
X_sqrt5[:, 0:6] = signs[:, 0:6] * np.sqrt(np.abs(X_sqrt5[:, 0:6])) # introduce pathological transformation, NOT captured by ground-truth model
y = (true_coefs * X_sqrt5).sum(axis=1) + epsilon
C_grid = np.logspace(-2, 0.5, 25)
run_lasso(X, y, comment, n_samples, n_feat,
n_feat_relevant, C_grid=C_grid)
alpha: 0.0100 acc: 0.88 active_coefs: 40 alpha: 0.0127 acc: 0.88 active_coefs: 40 alpha: 0.0162 acc: 0.88 active_coefs: 40 alpha: 0.0205 acc: 0.88 active_coefs: 40 alpha: 0.0261 acc: 0.88 active_coefs: 40 alpha: 0.0332 acc: 0.88 active_coefs: 39 alpha: 0.0422 acc: 0.88 active_coefs: 35 alpha: 0.0536 acc: 0.88 active_coefs: 29 alpha: 0.0681 acc: 0.88 active_coefs: 19 alpha: 0.0866 acc: 0.88 active_coefs: 16 alpha: 0.1101 acc: 0.87 active_coefs: 12 alpha: 0.1399 acc: 0.87 active_coefs: 10 alpha: 0.1778 acc: 0.86 active_coefs: 10 alpha: 0.2260 acc: 0.84 active_coefs: 8 alpha: 0.2873 acc: 0.82 active_coefs: 8 alpha: 0.3652 acc: 0.79 active_coefs: 8 alpha: 0.4642 acc: 0.74 active_coefs: 7 alpha: 0.5900 acc: 0.67 active_coefs: 7 alpha: 0.7499 acc: 0.58 active_coefs: 4 alpha: 0.9532 acc: 0.46 active_coefs: 4 alpha: 1.2115 acc: 0.28 active_coefs: 3 alpha: 1.5399 acc: 0.12 active_coefs: 2 alpha: 1.9573 acc: 0.00 active_coefs: 1 alpha: 2.4879 acc: -0.00 active_coefs: 0 alpha: 3.1623 acc: -0.00 active_coefs: 0 40 280.81838128 185.051650597 162.88201745 85.3330991348 63.4917864069 43.377949246 40.80446038 21.9604985602 5.04246713604 4.26929741094 1.96706005172 0.966373233503 0.778172567731 0.745373058737 0.569681434625 0.55625387768 0.531978428786 0.524489358896 0.432711005565 0.378456321842 0.376749381122 0.370754243673 0.359919320587 0.333398247406 0.282094917425 0.281170933348 0.275016710205 0.271553772295 0.237934528659 0.237372937007 0.202448397809 0.197458054233 0.161273189598 0.151824327378 0.078635501981 0.0456266473681 0.0442190444804 0.0241547741538 0.0221343750767 0.0141042018173 skipping 3 skipping 4 skipping 6 skipping 7 skipping 12 skipping 14 skipping 15 skipping 17 skipping 19 skipping 24
### observation: 5/5 path. variables are significant, the same 5/5 path. (?) variables are selected as predictive
comment = "logn / dataset: 10/40 relevant variables, including 5 pathological ones, linear ground truth, some noise"
rs = np.random.RandomState(1)
n_samples = 1000
n_feat = 40
n_feat_relevant = 10
epsilon = rs.randn(n_samples)
true_coefs = rs.randn(n_feat)
true_coefs[n_feat_relevant:] = 0
X = rs.randn(n_samples, n_feat)
X_log5 = X.copy()
signs = np.sign(X)
# Bertrand: no sign update
# Bertrand: rather log (X + constant); such as constant=4
X_log5[:, 0:6] = signs[:, 0:6] * np.log(np.abs(X_log5[:, 0:6])) # introduce pathological transformation, NOT captured by ground-truth model
y = (true_coefs * X_log5).sum(axis=1) + epsilon
C_grid = np.logspace(-2, 0.5, 25)
run_lasso(X, y, comment, n_samples, n_feat,
n_feat_relevant, C_grid=C_grid)
alpha: 0.0100 acc: 0.13 active_coefs: 40 alpha: 0.0127 acc: 0.13 active_coefs: 40 alpha: 0.0162 acc: 0.13 active_coefs: 40 alpha: 0.0205 acc: 0.13 active_coefs: 40 alpha: 0.0261 acc: 0.13 active_coefs: 40 alpha: 0.0332 acc: 0.13 active_coefs: 40 alpha: 0.0422 acc: 0.13 active_coefs: 40 alpha: 0.0536 acc: 0.14 active_coefs: 40 alpha: 0.0681 acc: 0.14 active_coefs: 40 alpha: 0.0866 acc: 0.14 active_coefs: 40 alpha: 0.1101 acc: 0.14 active_coefs: 40 alpha: 0.1399 acc: 0.15 active_coefs: 38 alpha: 0.1778 acc: 0.16 active_coefs: 29 alpha: 0.2260 acc: 0.15 active_coefs: 16 alpha: 0.2873 acc: 0.15 active_coefs: 13 alpha: 0.3652 acc: 0.15 active_coefs: 8 alpha: 0.4642 acc: 0.14 active_coefs: 5 alpha: 0.5900 acc: 0.13 active_coefs: 4 alpha: 0.7499 acc: 0.12 active_coefs: 3 alpha: 0.9532 acc: 0.09 active_coefs: 2 alpha: 1.2115 acc: 0.06 active_coefs: 1 alpha: 1.5399 acc: 0.01 active_coefs: 1 alpha: 1.9573 acc: -0.00 active_coefs: 0 alpha: 2.4879 acc: -0.00 active_coefs: 0 alpha: 3.1623 acc: -0.00 active_coefs: 0 40 30.1690564789 14.7235400932 6.29702760204 3.44313078711 2.27256983837 2.17952649457 2.14748133614 1.63682352844 1.53512098893 1.49830164697 0.984371184175 0.965015596298 0.748898813483 0.660653418414 0.657087217632 0.655709193224 0.649315170553 0.510438462762 0.459474927836 0.451883676344 0.418696576568 0.403180556243 0.377593082023 0.362440684088 0.350750473413 0.335545717201 0.33446417349 0.27989359913 0.257622766449 0.198178076446 0.192683829352 0.169184836979 0.151540381614 0.143814167025 0.143062010504 0.122489759224 0.104997363716 0.0947527121556 0.0788067961437 0.0710569600832 skipping 3 skipping 4 skipping 5 skipping 6 skipping 8 skipping 9 skipping 10 skipping 11 skipping 12 skipping 13 skipping 21 skipping 23 skipping 24
comment = "exp / dataset: 10/40 relevant variables, including 5 pathological ones, linear ground truth, some noise only monotone transformation"
rs = np.random.RandomState(1)
n_samples = 1000
n_feat = 40
n_feat_relevant = 10
epsilon = rs.randn(n_samples)
true_coefs = rs.randn(n_feat)
true_coefs[n_feat_relevant:] = 0
X = rs.randn(n_samples, n_feat)
X_exp = X.copy()
signs = np.sign(X)
X_exp[:, 0:6] = signs[:, 0:6] * np.exp(X_exp[:, 0:6]) # introduce pathological transformation, NOT captured by ground-truth model
y = (true_coefs * X_exp).sum(axis=1) + epsilon
C_grid = np.logspace(-3, 1, 25)
run_lasso(X, y, comment, n_samples, n_feat,
n_feat_relevant, C_grid=C_grid)
alpha: 0.0010 acc: 0.70 active_coefs: 40 alpha: 0.0015 acc: 0.70 active_coefs: 40 alpha: 0.0022 acc: 0.70 active_coefs: 40 alpha: 0.0032 acc: 0.70 active_coefs: 40 alpha: 0.0046 acc: 0.70 active_coefs: 40 alpha: 0.0068 acc: 0.70 active_coefs: 40 alpha: 0.0100 acc: 0.70 active_coefs: 40 alpha: 0.0147 acc: 0.70 active_coefs: 40 alpha: 0.0215 acc: 0.70 active_coefs: 40 alpha: 0.0316 acc: 0.70 active_coefs: 40 alpha: 0.0464 acc: 0.71 active_coefs: 40 alpha: 0.0681 acc: 0.71 active_coefs: 40 alpha: 0.1000 acc: 0.71 active_coefs: 40 alpha: 0.1468 acc: 0.71 active_coefs: 37 alpha: 0.2154 acc: 0.72 active_coefs: 25 alpha: 0.3162 acc: 0.72 active_coefs: 15 alpha: 0.4642 acc: 0.71 active_coefs: 9 alpha: 0.6813 acc: 0.67 active_coefs: 8 alpha: 1.0000 acc: 0.62 active_coefs: 4 alpha: 1.4678 acc: 0.51 active_coefs: 4 alpha: 2.1544 acc: 0.39 active_coefs: 2 alpha: 3.1623 acc: 0.17 active_coefs: 2 alpha: 4.6416 acc: -0.00 active_coefs: 0 alpha: 6.8129 acc: -0.00 active_coefs: 0 alpha: 10.0000 acc: -0.00 active_coefs: 0 40 76.2143531819 45.3613686825 11.8860592524 10.7770231965 3.92670584568 3.31257575664 2.29754305425 2.15258273589 1.30573326531 1.06197768944 1.00006512521 0.852205601628 0.718481807765 0.660739203119 0.612899107741 0.583045619179 0.507725234888 0.436234962749 0.435416377275 0.374203408051 0.365593619403 0.362775096156 0.36079077124 0.262820523178 0.261969847886 0.254061694889 0.229051548961 0.206583221557 0.198821191253 0.179707832984 0.155608965768 0.126833265463 0.123219303399 0.102081170546 0.101839208832 0.0803103243867 0.0585020869233 0.0523148663045 0.04916679132 0.0323112879968 skipping 3 skipping 4 skipping 5 skipping 6 skipping 7 skipping 8 skipping 10 skipping 11 skipping 12 skipping 13 skipping 14 skipping 15 skipping 19 skipping 21 skipping 23 skipping 24
comment = "dataset: 1/40 relevant variables linear ground truth + some noise"
rs = np.random.RandomState(1)
n_samples = 60
n_feat = 40
n_feat_relevant = 1
epsilon = rs.randn(n_samples)
true_coefs = rs.randn(n_feat)
true_coefs[n_feat_relevant:] = 0
X = rs.randn(n_samples, n_feat)
X_exp = X.copy()
signs = np.sign(X)
y = (true_coefs * X).sum(axis=1) + epsilon * 1
C_grid = np.logspace(-3, 1, 25)
run_lasso(X, y, comment, n_samples, n_feat,
n_feat_relevant, C_grid=C_grid)
alpha: 0.0010 acc: -1.25 active_coefs: 40 alpha: 0.0015 acc: -1.06 active_coefs: 40 alpha: 0.0022 acc: -0.80 active_coefs: 40 alpha: 0.0032 acc: -0.47 active_coefs: 40 alpha: 0.0046 acc: -0.07 active_coefs: 40 alpha: 0.0068 acc: 0.24 active_coefs: 40 alpha: 0.0100 acc: 0.37 active_coefs: 40 alpha: 0.0147 acc: 0.47 active_coefs: 40 alpha: 0.0215 acc: 0.51 active_coefs: 40 alpha: 0.0316 acc: 0.52 active_coefs: 40 alpha: 0.0464 acc: 0.46 active_coefs: 39 alpha: 0.0681 acc: 0.45 active_coefs: 37 alpha: 0.1000 acc: 0.49 active_coefs: 32 alpha: 0.1468 acc: 0.48 active_coefs: 21 alpha: 0.2154 acc: 0.46 active_coefs: 12 alpha: 0.3162 acc: 0.43 active_coefs: 3 alpha: 0.4642 acc: 0.35 active_coefs: 1 alpha: 0.6813 acc: 0.23 active_coefs: 1 alpha: 1.0000 acc: 0.02 active_coefs: 1 alpha: 1.4678 acc: -0.02 active_coefs: 0 alpha: 2.1544 acc: -0.02 active_coefs: 0 alpha: 3.1623 acc: -0.02 active_coefs: 0 alpha: 4.6416 acc: -0.02 active_coefs: 0 alpha: 6.8129 acc: -0.02 active_coefs: 0 alpha: 10.0000 acc: -0.02 active_coefs: 0 40 5.49843999918 2.20862842615 1.6627727626 1.53716686016 1.28478081045 0.828063403002 0.803738383855 0.770219548481 0.767916261689 0.740917805793 0.702491287288 0.668384117993 0.631945268853 0.630014593113 0.57585460771 0.57562708848 0.550387508027 0.426464076979 0.423766813883 0.383521053994 0.374288322857 0.367539894884 0.226933568061 0.221980057228 0.207508177611 0.155989296473 0.119922628961 0.119745646911 0.116770699723 0.113798549995 0.111410358147 0.0939433931034 0.0732957588312 0.0555086334971 0.040113224744 0.0392843730584 0.022928790449 0.0228765856354 0.0153164947934 0.0139348330708 skipping 8 skipping 9 skipping 10 skipping 11 skipping 13 skipping 14 skipping 15 skipping 16 skipping 17 skipping 18 skipping 19 skipping 20 skipping 21 skipping 22 skipping 23 skipping 24
comment = "dataset: 0/40 relevant variables linear ground truth + some noise"
rs = np.random.RandomState(1)
n_samples = 60
n_feat = 40
n_feat_relevant = 0
epsilon = rs.randn(n_samples)
true_coefs = rs.randn(n_feat)
true_coefs[n_feat_relevant:] = 0
X = rs.randn(n_samples, n_feat)
X_exp = X.copy()
signs = np.sign(X)
y = (true_coefs * X).sum(axis=1) + epsilon * 1
C_grid = np.logspace(-3, 1, 25)
run_lasso(X, y, comment, n_samples, n_feat,
n_feat_relevant, C_grid=C_grid)
alpha: 0.0010 acc: -3.11 active_coefs: 40 alpha: 0.0015 acc: -2.76 active_coefs: 40 alpha: 0.0022 acc: -2.29 active_coefs: 40 alpha: 0.0032 acc: -1.68 active_coefs: 40 alpha: 0.0046 acc: -0.95 active_coefs: 40 alpha: 0.0068 acc: -0.39 active_coefs: 40 alpha: 0.0100 acc: -0.16 active_coefs: 40 alpha: 0.0147 acc: 0.03 active_coefs: 40 alpha: 0.0215 acc: 0.11 active_coefs: 40 alpha: 0.0316 acc: 0.12 active_coefs: 40 alpha: 0.0464 acc: 0.01 active_coefs: 39 alpha: 0.0681 acc: -0.01 active_coefs: 37 alpha: 0.1000 acc: 0.06 active_coefs: 32 alpha: 0.1468 acc: 0.06 active_coefs: 21 alpha: 0.2154 acc: 0.02 active_coefs: 13 alpha: 0.3162 acc: -0.00 active_coefs: 3 alpha: 0.4642 acc: -0.00 active_coefs: 0 alpha: 0.6813 acc: -0.00 active_coefs: 0 alpha: 1.0000 acc: -0.00 active_coefs: 0 alpha: 1.4678 acc: -0.00 active_coefs: 0 alpha: 2.1544 acc: -0.00 active_coefs: 0 alpha: 3.1623 acc: -0.00 active_coefs: 0 alpha: 4.6416 acc: -0.00 active_coefs: 0 alpha: 6.8129 acc: -0.00 active_coefs: 0 alpha: 10.0000 acc: -0.00 active_coefs: 0 40 2.20862842615 1.6627727626 1.53716686016 1.37947545309 1.28478081045 0.828063403002 0.803738383855 0.770219548481 0.767916261689 0.740917805793 0.702491287288 0.668384117993 0.631945268853 0.630014593113 0.57585460771 0.57562708848 0.550387508027 0.426464076979 0.423766813883 0.383521053994 0.374288322857 0.367539894884 0.226933568061 0.221980057228 0.207508177611 0.155989296473 0.119922628961 0.119745646911 0.116770699723 0.113798549995 0.111410358147 0.0939433931034 0.0732957588312 0.0555086334971 0.040113224744 0.0392843730584 0.022928790449 0.0228765856354 0.0153164947934 0.0139348330708 skipping 4 skipping 5 skipping 6 skipping 7 skipping 8 skipping 9 skipping 10 skipping 11 skipping 16 skipping 17 skipping 18 skipping 19 skipping 20 skipping 21 skipping 22 skipping 23 skipping 24
comment = "1/x / dataset: 10/40 relevant variables, including 5 pathological ones, linear ground truth, some noise opposite effect of log roughly; small values become gigantic"
rs = np.random.RandomState(1)
n_samples = 1000
n_feat = 40
n_feat_relevant = 10
epsilon = rs.randn(n_samples)
true_coefs = rs.randn(n_feat)
true_coefs[n_feat_relevant:] = 0
X = rs.randn(n_samples, n_feat)
X_inv = X.copy()
X_inv[:, 0:6] = 1. / X_inv[:, 0:6] # introduce pathological transformation, NOT captured by ground-truth model
y = (true_coefs * X_inv).sum(axis=1) + epsilon
C_grid = np.logspace(-2, 1.5, 25)
run_lasso(X, y, comment, n_samples, n_feat,
n_feat_relevant, C_grid=C_grid)
alpha: 0.0100 acc: -0.13 active_coefs: 40 alpha: 0.0140 acc: -0.13 active_coefs: 40 alpha: 0.0196 acc: -0.13 active_coefs: 40 alpha: 0.0274 acc: -0.13 active_coefs: 40 alpha: 0.0383 acc: -0.13 active_coefs: 40 alpha: 0.0536 acc: -0.13 active_coefs: 40 alpha: 0.0750 acc: -0.13 active_coefs: 40 alpha: 0.1049 acc: -0.13 active_coefs: 40 alpha: 0.1468 acc: -0.13 active_coefs: 40 alpha: 0.2054 acc: -0.13 active_coefs: 40 alpha: 0.2873 acc: -0.12 active_coefs: 40 alpha: 0.4019 acc: -0.12 active_coefs: 40 alpha: 0.5623 acc: -0.12 active_coefs: 40 alpha: 0.7867 acc: -0.11 active_coefs: 40 alpha: 1.1007 acc: -0.11 active_coefs: 40 alpha: 1.5399 acc: -0.10 active_coefs: 40 alpha: 2.1544 acc: -0.09 active_coefs: 40 alpha: 3.0142 acc: -0.08 active_coefs: 40 alpha: 4.2170 acc: -0.06 active_coefs: 33 alpha: 5.8997 acc: -0.05 active_coefs: 28 alpha: 8.2540 acc: -0.04 active_coefs: 16 alpha: 11.5478 acc: -0.02 active_coefs: 7 alpha: 16.1560 acc: -0.02 active_coefs: 0 alpha: 22.6030 acc: -0.02 active_coefs: 0 alpha: 31.6228 acc: -0.02 active_coefs: 0 40 1.23328886799 1.1642438789 1.12861866505 1.11143662299 0.984953226432 0.919861684347 0.855082099196 0.708081111681 0.707125873183 0.653618213156 0.55025454591 0.540136715094 0.528939731724 0.523176775359 0.43870431882 0.37469548558 0.369528596131 0.367385028417 0.350506966043 0.289671628796 0.288371099717 0.281743191572 0.276873699717 0.259611725841 0.201319017302 0.170246564109 0.166991254372 0.149804006458 0.143716583718 0.118217638043 0.112994561554 0.11182729728 0.108555807666 0.0896232839141 0.0826176298745 0.0452607575379 0.0387188200396 0.0318337572718 0.0228396412336 0.0166646523702 skipping 1 skipping 2 skipping 8 skipping 9 skipping 10 skipping 11 skipping 12 skipping 13 skipping 14 skipping 15 skipping 16 skipping 17 skipping 18 skipping 19 skipping 20 skipping 21 skipping 22 skipping 23 skipping 24
comment = "x^2 / dataset: 10/40 relevant variables, including 5 pathological ones, linear ground truth, some noise cube -> keep monotony; otherwise not -> "
rs = np.random.RandomState(1)
n_samples = 1000
n_feat = 40
n_feat_relevant = 10
epsilon = rs.randn(n_samples)
true_coefs = rs.randn(n_feat)
true_coefs[n_feat_relevant:] = 0
X = rs.randn(n_samples, n_feat)
X_2 = X.copy()
X_2[:, 0:6] = np.square(X_2[:, 0:6]) # introduce pathological transformation, NOT captured by ground-truth model
y = (true_coefs * X_2).sum(axis=1) + epsilon
C_grid = np.logspace(-2, 1.5, 25)
run_lasso(X, y, comment, n_samples, n_feat,
n_feat_relevant, C_grid=C_grid)
alpha: 0.0100 acc: 0.10 active_coefs: 40 alpha: 0.0140 acc: 0.10 active_coefs: 40 alpha: 0.0196 acc: 0.10 active_coefs: 40 alpha: 0.0274 acc: 0.11 active_coefs: 40 alpha: 0.0383 acc: 0.11 active_coefs: 40 alpha: 0.0536 acc: 0.12 active_coefs: 40 alpha: 0.0750 acc: 0.12 active_coefs: 40 alpha: 0.1049 acc: 0.13 active_coefs: 40 alpha: 0.1468 acc: 0.14 active_coefs: 35 alpha: 0.2054 acc: 0.14 active_coefs: 21 alpha: 0.2873 acc: 0.15 active_coefs: 10 alpha: 0.4019 acc: 0.15 active_coefs: 7 alpha: 0.5623 acc: 0.13 active_coefs: 4 alpha: 0.7867 acc: 0.10 active_coefs: 2 alpha: 1.1007 acc: 0.05 active_coefs: 1 alpha: 1.5399 acc: -0.03 active_coefs: 1 alpha: 2.1544 acc: -0.03 active_coefs: 0 alpha: 3.0142 acc: -0.03 active_coefs: 0 alpha: 4.2170 acc: -0.03 active_coefs: 0 alpha: 5.8997 acc: -0.03 active_coefs: 0 alpha: 8.2540 acc: -0.03 active_coefs: 0 alpha: 11.5478 acc: -0.03 active_coefs: 0 alpha: 16.1560 acc: -0.03 active_coefs: 0 alpha: 22.6030 acc: -0.03 active_coefs: 0 alpha: 31.6228 acc: -0.03 active_coefs: 0 40 13.659806738 4.66152493206 2.50215172889 2.43369759722 1.67610947252 1.30514390134 1.04378641578 0.953155031622 0.877840222358 0.808479659606 0.79008994489 0.531379374082 0.495837310808 0.452914579975 0.443459511339 0.419351702886 0.41834354119 0.410735633449 0.400939373898 0.363995922809 0.330936198292 0.330213317472 0.307688499341 0.253256677675 0.238763636337 0.220195455476 0.196212398691 0.184377967691 0.174320534055 0.172474515603 0.169895832654 0.166000066243 0.152902783997 0.114169548555 0.086096020092 0.0681634636715 0.0392594094376 0.0192412595491 0.01066194249 0.00472249626506 skipping 4 skipping 5 skipping 7 skipping 8 skipping 9 skipping 10 skipping 11 skipping 15 skipping 17 skipping 18 skipping 19 skipping 20 skipping 21 skipping 22 skipping 23 skipping 24
comment = "x^3 / dataset: 10/40 relevant variables, including 5 pathological ones, linear ground truth, some noise"
rs = np.random.RandomState(1)
n_samples = 1000
n_feat = 40
n_feat_relevant = 10
epsilon = rs.randn(n_samples)
true_coefs = rs.randn(n_feat)
true_coefs[n_feat_relevant:] = 0
X = rs.randn(n_samples, n_feat)
X_3 = X.copy()
X_3[:, 0:6] = X_3[:, 0:6]**3 # introduce pathological transformation, NOT captured by ground-truth model
y = (true_coefs * X_3).sum(axis=1) + epsilon
C_grid = np.logspace(-2, 1.5, 25)
run_lasso(X, y, comment, n_samples, n_feat,
n_feat_relevant, C_grid=C_grid)
alpha: 0.0100 acc: 0.70 active_coefs: 40 alpha: 0.0140 acc: 0.70 active_coefs: 40 alpha: 0.0196 acc: 0.70 active_coefs: 40 alpha: 0.0274 acc: 0.70 active_coefs: 40 alpha: 0.0383 acc: 0.70 active_coefs: 40 alpha: 0.0536 acc: 0.70 active_coefs: 40 alpha: 0.0750 acc: 0.71 active_coefs: 40 alpha: 0.1049 acc: 0.71 active_coefs: 40 alpha: 0.1468 acc: 0.71 active_coefs: 40 alpha: 0.2054 acc: 0.71 active_coefs: 37 alpha: 0.2873 acc: 0.71 active_coefs: 33 alpha: 0.4019 acc: 0.71 active_coefs: 24 alpha: 0.5623 acc: 0.70 active_coefs: 12 alpha: 0.7867 acc: 0.68 active_coefs: 8 alpha: 1.1007 acc: 0.64 active_coefs: 7 alpha: 1.5399 acc: 0.57 active_coefs: 4 alpha: 2.1544 acc: 0.50 active_coefs: 3 alpha: 3.0142 acc: 0.41 active_coefs: 2 alpha: 4.2170 acc: 0.23 active_coefs: 2 alpha: 5.8997 acc: 0.08 active_coefs: 1 alpha: 8.2540 acc: -0.00 active_coefs: 0 alpha: 11.5478 acc: -0.00 active_coefs: 0 alpha: 16.1560 acc: -0.00 active_coefs: 0 alpha: 22.6030 acc: -0.00 active_coefs: 0 alpha: 31.6228 acc: -0.00 active_coefs: 0 40 150.243108154 75.0283749478 23.272204574 15.3187159372 7.87503220061 5.61870855681 3.81530402359 2.12069438148 1.46170253145 1.36882744084 1.12680810745 1.108092383 0.840109831874 0.788400497084 0.761307405398 0.739485213624 0.642302070955 0.630742505569 0.619784968806 0.618575918143 0.600478768004 0.588333972587 0.567855483538 0.491926495158 0.489941867261 0.481027300636 0.470793838239 0.459169120441 0.423885028547 0.41032864251 0.379035383086 0.342683717811 0.265901243367 0.185562455302 0.166495244096 0.0941668480445 0.0648977457284 0.0404564612609 0.0297791289573 0.0166129303079 skipping 3 skipping 4 skipping 6 skipping 7 skipping 8 skipping 9 skipping 10 skipping 11 skipping 18 skipping 21 skipping 22 skipping 23 skipping 24
### observation: 4/5 path. variables are significant, the same 4/5 path. variables are selected as predictive
comment = "x^4 / dataset: 10/40 relevant variables, including 5 pathological ones, linear ground truth, some noise"
rs = np.random.RandomState(1)
n_samples = 1000
n_feat = 40
n_feat_relevant = 10
epsilon = rs.randn(n_samples)
true_coefs = rs.randn(n_feat)
true_coefs[n_feat_relevant:] = 0
X = rs.randn(n_samples, n_feat)
X_4 = X.copy()
X_4[:, 0:6] = X_4[:, 0:6]**4 # introduce pathological transformation, NOT captured by ground-truth model
y = (true_coefs * X_4).sum(axis=1) + epsilon
C_grid = np.logspace(-1, 1.0, 25)
run_lasso(X, y, comment, n_samples, n_feat,
n_feat_relevant, C_grid=C_grid)
alpha: 0.1000 acc: -0.13 active_coefs: 40 alpha: 0.1212 acc: -0.13 active_coefs: 40 alpha: 0.1468 acc: -0.12 active_coefs: 40 alpha: 0.1778 acc: -0.12 active_coefs: 40 alpha: 0.2154 acc: -0.11 active_coefs: 40 alpha: 0.2610 acc: -0.11 active_coefs: 40 alpha: 0.3162 acc: -0.10 active_coefs: 40 alpha: 0.3831 acc: -0.09 active_coefs: 40 alpha: 0.4642 acc: -0.08 active_coefs: 40 alpha: 0.5623 acc: -0.07 active_coefs: 40 alpha: 0.6813 acc: -0.06 active_coefs: 39 alpha: 0.8254 acc: -0.05 active_coefs: 37 alpha: 1.0000 acc: -0.04 active_coefs: 33 alpha: 1.2115 acc: -0.02 active_coefs: 25 alpha: 1.4678 acc: -0.01 active_coefs: 17 alpha: 1.7783 acc: -0.00 active_coefs: 9 alpha: 2.1544 acc: -0.00 active_coefs: 3 alpha: 2.6102 acc: -0.00 active_coefs: 1 alpha: 3.1623 acc: -0.00 active_coefs: 0 alpha: 3.8312 acc: -0.00 active_coefs: 0 alpha: 4.6416 acc: -0.00 active_coefs: 0 alpha: 5.6234 acc: -0.00 active_coefs: 0 alpha: 6.8129 acc: -0.00 active_coefs: 0 alpha: 8.2540 acc: -0.00 active_coefs: 0 alpha: 10.0000 acc: -0.00 active_coefs: 0 40 2.27312640394 1.81146459557 1.28792716039 1.23638187293 1.19728979578 0.823951430378 0.8059726792 0.731878206262 0.705922719017 0.68986927677 0.657107742186 0.644955707324 0.586704013568 0.457372465623 0.41761560617 0.402731665316 0.393307161277 0.362987419564 0.3464016722 0.324458303681 0.31708272733 0.308342189407 0.251868690387 0.234421959485 0.217933699178 0.201723699943 0.193755453118 0.181325877158 0.156509331924 0.128717941181 0.125950774089 0.116441899229 0.108004883958 0.0963564816516 0.0729641005321 0.0575923934638 0.0231724384812 0.0218756211694 0.0200828890486 0.0183867576655 skipping 1 skipping 2 skipping 3 skipping 4 skipping 5 skipping 6 skipping 16 skipping 17 skipping 18 skipping 19 skipping 20 skipping 21 skipping 22 skipping 23 skipping 24
comment = "x^5 / dataset: 10/40 relevant variables, including 5 pathological ones, linear ground truth, some noise"
rs = np.random.RandomState(1)
n_samples = 1000
n_feat = 40
n_feat_relevant = 10
epsilon = rs.randn(n_samples)
true_coefs = rs.randn(n_feat)
true_coefs[n_feat_relevant:] = 0
X = rs.randn(n_samples, n_feat)
X_5 = X.copy()
X_5[:, 0:6] = X_5[:, 0:6]**5 # introduce pathological transformation, NOT captured by ground-truth model
y = (true_coefs * X_5).sum(axis=1) + epsilon
C_grid = np.logspace(-1, 2, 25)
run_lasso(X, y, comment, n_samples, n_feat,
n_feat_relevant, C_grid=C_grid)
alpha: 0.1000 acc: 0.28 active_coefs: 40 alpha: 0.1334 acc: 0.28 active_coefs: 40 alpha: 0.1778 acc: 0.29 active_coefs: 40 alpha: 0.2371 acc: 0.29 active_coefs: 40 alpha: 0.3162 acc: 0.29 active_coefs: 40 alpha: 0.4217 acc: 0.30 active_coefs: 40 alpha: 0.5623 acc: 0.30 active_coefs: 40 alpha: 0.7499 acc: 0.31 active_coefs: 40 alpha: 1.0000 acc: 0.31 active_coefs: 40 alpha: 1.3335 acc: 0.32 active_coefs: 40 alpha: 1.7783 acc: 0.33 active_coefs: 36 alpha: 2.3714 acc: 0.34 active_coefs: 33 alpha: 3.1623 acc: 0.35 active_coefs: 25 alpha: 4.2170 acc: 0.35 active_coefs: 11 alpha: 5.6234 acc: 0.33 active_coefs: 6 alpha: 7.4989 acc: 0.30 active_coefs: 3 alpha: 10.0000 acc: 0.26 active_coefs: 3 alpha: 13.3352 acc: 0.22 active_coefs: 2 alpha: 17.7828 acc: 0.15 active_coefs: 2 alpha: 23.7137 acc: 0.10 active_coefs: 1 alpha: 31.6228 acc: -0.00 active_coefs: 1 alpha: 42.1697 acc: -0.00 active_coefs: 0 alpha: 56.2341 acc: -0.00 active_coefs: 0 alpha: 74.9894 acc: -0.00 active_coefs: 0 alpha: 100.0000 acc: -0.00 active_coefs: 0 40 49.2371190602 18.584028178 7.21483498789 2.47120034517 1.77517671435 1.50111176216 0.996707702412 0.941775600473 0.932778004676 0.902291768925 0.821245862361 0.676404064949 0.676265814707 0.62985792574 0.628353937742 0.621159743954 0.610128413389 0.523606146004 0.504442347076 0.455136106657 0.435947510042 0.428599490922 0.409290482757 0.403699906469 0.346030679159 0.299699876642 0.294899094667 0.241158419627 0.239141190831 0.238607265024 0.232912077744 0.200913881714 0.18408167703 0.159837282161 0.107336533579 0.103838877059 0.100530824106 0.0992206235634 0.0932097845463 0.0151452277154 skipping 7 skipping 8 skipping 9 skipping 10 skipping 11 skipping 12 skipping 13 skipping 14 skipping 15 skipping 16 skipping 18 skipping 20 skipping 22 skipping 23 skipping 24
comment = "3 correlated vars at ~50% / dataset: 10/40 relevant variables, linear ground truth, some noise"
rs = np.random.RandomState(1)
n_samples = 1000
n_feat = 40
n_feat_relevant = 10
epsilon = rs.randn(n_samples)
true_coefs = rs.randn(n_feat)
true_coefs[n_feat_relevant:] = 0
X = rs.randn(n_samples, n_feat)
n_corr_feat = 3
cov = np.ones((n_corr_feat, n_corr_feat)) * .5
cov[np.diag_indices(n_corr_feat)] = 1
X_corr = rs.multivariate_normal(mean=np.zeros((n_corr_feat)), cov=cov, size=n_samples)
X[:, 0:n_corr_feat] = X_corr
y = (true_coefs * X).sum(axis=1) + epsilon
C_grid = np.logspace(-2, 1, 25)
run_lasso(X, y, comment, n_samples, n_feat,
n_feat_relevant, C_grid=C_grid)
alpha: 0.0100 acc: 0.93 active_coefs: 40 alpha: 0.0133 acc: 0.93 active_coefs: 40 alpha: 0.0178 acc: 0.93 active_coefs: 40 alpha: 0.0237 acc: 0.93 active_coefs: 39 alpha: 0.0316 acc: 0.93 active_coefs: 36 alpha: 0.0422 acc: 0.93 active_coefs: 29 alpha: 0.0562 acc: 0.92 active_coefs: 21 alpha: 0.0750 acc: 0.92 active_coefs: 15 alpha: 0.1000 acc: 0.91 active_coefs: 12 alpha: 0.1334 acc: 0.90 active_coefs: 9 alpha: 0.1778 acc: 0.89 active_coefs: 9 alpha: 0.2371 acc: 0.87 active_coefs: 8 alpha: 0.3162 acc: 0.85 active_coefs: 7 alpha: 0.4217 acc: 0.81 active_coefs: 7 alpha: 0.5623 acc: 0.73 active_coefs: 7 alpha: 0.7499 acc: 0.64 active_coefs: 5 alpha: 1.0000 acc: 0.51 active_coefs: 3 alpha: 1.3335 acc: 0.30 active_coefs: 3 alpha: 1.7783 acc: 0.10 active_coefs: 2 alpha: 2.3714 acc: -0.00 active_coefs: 0 alpha: 3.1623 acc: -0.00 active_coefs: 0 alpha: 4.2170 acc: -0.00 active_coefs: 0 alpha: 5.6234 acc: -0.00 active_coefs: 0 alpha: 7.4989 acc: -0.00 active_coefs: 0 alpha: 10.0000 acc: -0.00 active_coefs: 0 40 267.297057962 257.077329698 123.953958013 110.714409952 64.5552706964 58.1514318377 31.4184117078 15.6535597745 12.3603261008 3.93613852142 1.72093092201 1.23638678616 1.13629145185 1.04180914503 0.777051875767 0.612476971947 0.529772284355 0.48723140239 0.47010409933 0.377690974262 0.331074148568 0.325426743346 0.323438450552 0.321005746635 0.320191060137 0.311990939412 0.299338839163 0.294236590827 0.287545269398 0.268444087709 0.25449472524 0.246914692328 0.145628291764 0.121930395595 0.101743752358 0.0519583947804 0.0384864960574 0.0313702428645 0.028852048216 0.0132349880354 skipping 3 skipping 4 skipping 10 skipping 13 skipping 14 skipping 17 skipping 20 skipping 21 skipping 22 skipping 23 skipping 24
### observation: 10/10 variables are significant, the 2/3 corr. variables are selected as predictive
comment = "5 correlated vars at ~50% / dataset: 10/40 relevant variables, linear ground truth, some noise"
rs = np.random.RandomState(1)
n_samples = 1000
n_feat = 40
n_feat_relevant = 10
epsilon = rs.randn(n_samples)
true_coefs = rs.randn(n_feat)
true_coefs[n_feat_relevant:] = 0
X = rs.randn(n_samples, n_feat)
n_corr_feat = 5
cov = np.ones((n_corr_feat, n_corr_feat)) * .5
cov[np.diag_indices(n_corr_feat)] = 1
X_corr = rs.multivariate_normal(mean=np.zeros((n_corr_feat)), cov=cov, size=n_samples)
X[:, 0:n_corr_feat] = X_corr
y = (true_coefs * X).sum(axis=1) + epsilon
C_grid = np.logspace(-2, 1, 25)
run_lasso(X, y, comment, n_samples, n_feat,
n_feat_relevant, C_grid=C_grid)
alpha: 0.0100 acc: 0.94 active_coefs: 40 alpha: 0.0133 acc: 0.94 active_coefs: 40 alpha: 0.0178 acc: 0.94 active_coefs: 40 alpha: 0.0237 acc: 0.94 active_coefs: 39 alpha: 0.0316 acc: 0.94 active_coefs: 35 alpha: 0.0422 acc: 0.94 active_coefs: 28 alpha: 0.0562 acc: 0.94 active_coefs: 19 alpha: 0.0750 acc: 0.94 active_coefs: 14 alpha: 0.1000 acc: 0.94 active_coefs: 12 alpha: 0.1334 acc: 0.93 active_coefs: 10 alpha: 0.1778 acc: 0.92 active_coefs: 10 alpha: 0.2371 acc: 0.91 active_coefs: 9 alpha: 0.3162 acc: 0.89 active_coefs: 8 alpha: 0.4217 acc: 0.85 active_coefs: 8 alpha: 0.5623 acc: 0.79 active_coefs: 8 alpha: 0.7499 acc: 0.71 active_coefs: 6 alpha: 1.0000 acc: 0.62 active_coefs: 4 alpha: 1.3335 acc: 0.47 active_coefs: 3 alpha: 1.7783 acc: 0.34 active_coefs: 2 alpha: 2.3714 acc: 0.20 active_coefs: 1 alpha: 3.1623 acc: 0.01 active_coefs: 1 alpha: 4.2170 acc: -0.00 active_coefs: 0 alpha: 5.6234 acc: -0.00 active_coefs: 0 alpha: 7.4989 acc: -0.00 active_coefs: 0 alpha: 10.0000 acc: -0.00 active_coefs: 0 40 313.549517688 257.926430562 191.06404283 124.531244884 108.997057085 64.4613934571 58.3681547567 44.0200256324 22.708161523 5.84026475176 1.38440748688 1.26029580981 1.18641696721 0.872586989065 0.822187337005 0.642076888446 0.583364864781 0.532313902143 0.37487020594 0.369299326617 0.365493311854 0.363450021274 0.330079475045 0.321739404554 0.31357492096 0.306167086407 0.261738855109 0.257064875627 0.201814622868 0.193021207977 0.182120408073 0.170821703447 0.170264349871 0.0927879134536 0.0813540679751 0.0781248126016 0.044205632203 0.0314982467255 0.0249758350177 0.0060603287728 skipping 2 skipping 4 skipping 10 skipping 13 skipping 14 skipping 20 skipping 22 skipping 23 skipping 24
### observation: 10/10 variables are significant, the 5/5 (?) corr. variables are selected as predictive
comment = "10 correlated vars at ~50% / dataset: 10/40 relevant variables, linear ground truth, some noise"
rs = np.random.RandomState(1)
n_samples = 1000
n_feat = 40
n_feat_relevant = 10
epsilon = rs.randn(n_samples)
true_coefs = rs.randn(n_feat)
true_coefs[n_feat_relevant:] = 0
X = rs.randn(n_samples, n_feat)
n_corr_feat = 10
cov = np.ones((n_corr_feat, n_corr_feat)) * .5
cov[np.diag_indices(n_corr_feat)] = 1
X_corr = rs.multivariate_normal(mean=np.zeros((n_corr_feat)), cov=cov, size=n_samples)
X[:, 0:n_corr_feat] = X_corr
y = (true_coefs * X).sum(axis=1) + epsilon
C_grid = np.logspace(-2, 1, 25)
run_lasso(X, y, comment, n_samples, n_feat,
n_feat_relevant, C_grid=C_grid)
alpha: 0.0100 acc: 0.91 active_coefs: 40 alpha: 0.0133 acc: 0.91 active_coefs: 40 alpha: 0.0178 acc: 0.91 active_coefs: 40 alpha: 0.0237 acc: 0.91 active_coefs: 39 alpha: 0.0316 acc: 0.91 active_coefs: 33 alpha: 0.0422 acc: 0.91 active_coefs: 30 alpha: 0.0562 acc: 0.91 active_coefs: 22 alpha: 0.0750 acc: 0.90 active_coefs: 14 alpha: 0.1000 acc: 0.89 active_coefs: 11 alpha: 0.1334 acc: 0.88 active_coefs: 10 alpha: 0.1778 acc: 0.85 active_coefs: 9 alpha: 0.2371 acc: 0.82 active_coefs: 9 alpha: 0.3162 acc: 0.78 active_coefs: 5 alpha: 0.4217 acc: 0.74 active_coefs: 5 alpha: 0.5623 acc: 0.66 active_coefs: 5 alpha: 0.7499 acc: 0.61 active_coefs: 4 alpha: 1.0000 acc: 0.57 active_coefs: 3 alpha: 1.3335 acc: 0.50 active_coefs: 2 alpha: 1.7783 acc: 0.38 active_coefs: 2 alpha: 2.3714 acc: 0.18 active_coefs: 1 alpha: 3.1623 acc: -0.01 active_coefs: 0 alpha: 4.2170 acc: -0.01 active_coefs: 0 alpha: 5.6234 acc: -0.01 active_coefs: 0 alpha: 7.4989 acc: -0.01 active_coefs: 0 alpha: 10.0000 acc: -0.01 active_coefs: 0 40 313.604664308 185.342557077 163.286474962 78.8073408038 68.0425959965 42.8118588326 38.1680054874 32.1663345522 16.1010294856 3.88226847491 1.51908251505 1.31671870707 1.13331713008 0.942980337959 0.671334026061 0.527527958679 0.516166975827 0.515060297813 0.45746543492 0.454561489988 0.398878294933 0.390650496877 0.35151437345 0.328316074233 0.304453208307 0.286492169873 0.240840246415 0.23451903018 0.233926076692 0.204222907567 0.199829895486 0.199651203146 0.152414067699 0.14480598684 0.128502593025 0.0738539509642 0.058806834594 0.0433177491567 0.0175832712395 0.000532831109096 skipping 1 skipping 3 skipping 11 skipping 13 skipping 14 skipping 18 skipping 21 skipping 22 skipping 23 skipping 24
### observation: 10/10 variables are significant, the 9/10 (?) corr. variables are selected as predictive
comment = "3 correlated vars at ~95% / dataset: 10/40 relevant variables, linear ground truth, some noise"
rs = np.random.RandomState(1)
n_samples = 1000
n_feat = 40
n_feat_relevant = 10
epsilon = rs.randn(n_samples)
true_coefs = rs.randn(n_feat)
true_coefs[n_feat_relevant:] = 0
X = rs.randn(n_samples, n_feat)
n_corr_feat = 3
cov = np.ones((n_corr_feat, n_corr_feat)) * .95
cov[np.diag_indices(n_corr_feat)] = 1
X_corr = rs.multivariate_normal(mean=np.zeros((n_corr_feat)), cov=cov, size=n_samples)
X[:, 0:n_corr_feat] = X_corr
y = (true_coefs * X).sum(axis=1) + epsilon
C_grid = np.logspace(-2, 1, 25)
run_lasso(X, y, comment, n_samples, n_feat,
n_feat_relevant, C_grid=C_grid)
alpha: 0.0100 acc: 0.92 active_coefs: 40 alpha: 0.0133 acc: 0.92 active_coefs: 40 alpha: 0.0178 acc: 0.92 active_coefs: 39 alpha: 0.0237 acc: 0.92 active_coefs: 39 alpha: 0.0316 acc: 0.93 active_coefs: 36 alpha: 0.0422 acc: 0.93 active_coefs: 28 alpha: 0.0562 acc: 0.92 active_coefs: 20 alpha: 0.0750 acc: 0.92 active_coefs: 14 alpha: 0.1000 acc: 0.92 active_coefs: 11 alpha: 0.1334 acc: 0.92 active_coefs: 9 alpha: 0.1778 acc: 0.91 active_coefs: 9 alpha: 0.2371 acc: 0.89 active_coefs: 9 alpha: 0.3162 acc: 0.87 active_coefs: 8 alpha: 0.4217 acc: 0.82 active_coefs: 8 alpha: 0.5623 acc: 0.75 active_coefs: 8 alpha: 0.7499 acc: 0.65 active_coefs: 6 alpha: 1.0000 acc: 0.52 active_coefs: 4 alpha: 1.3335 acc: 0.31 active_coefs: 3 alpha: 1.7783 acc: 0.09 active_coefs: 2 alpha: 2.3714 acc: -0.01 active_coefs: 0 alpha: 3.1623 acc: -0.01 active_coefs: 0 alpha: 4.2170 acc: -0.01 active_coefs: 0 alpha: 5.6234 acc: -0.01 active_coefs: 0 alpha: 7.4989 acc: -0.01 active_coefs: 0 alpha: 10.0000 acc: -0.01 active_coefs: 0 40 267.297057962 257.077329698 123.953958013 110.714409952 66.0147751544 64.5552706964 58.1514318377 12.3603261008 2.63357566384 1.72093092201 1.23638678616 1.13629145185 1.05893116802 1.04180914503 0.777051875767 0.612476971947 0.529772284355 0.48723140239 0.47010409933 0.377690974262 0.331074148568 0.325426743346 0.323438450552 0.321005746635 0.320191060137 0.311990939412 0.299338839163 0.294236590827 0.287545269398 0.268444087709 0.25449472524 0.246914692328 0.145628291764 0.121930395595 0.101743752358 0.0519583947804 0.0384864960574 0.0313702428645 0.0288520482161 0.0132349880354 skipping 2 skipping 5 skipping 10 skipping 11 skipping 13 skipping 14 skipping 20 skipping 21 skipping 22 skipping 23 skipping 24
comment = "5 correlated vars at ~95% / dataset: 10/40 relevant variables, linear ground truth, some noise"
rs = np.random.RandomState(1)
n_samples = 1000
n_feat = 40
n_feat_relevant = 10
epsilon = rs.randn(n_samples)
true_coefs = rs.randn(n_feat)
true_coefs[n_feat_relevant:] = 0
X = rs.randn(n_samples, n_feat)
n_corr_feat = 5
cov = np.ones((n_corr_feat, n_corr_feat)) * .95
cov[np.diag_indices(n_corr_feat)] = 1
X_corr = rs.multivariate_normal(mean=np.zeros((n_corr_feat)), cov=cov, size=n_samples)
X[:, 0:n_corr_feat] = X_corr
y = (true_coefs * X).sum(axis=1) + epsilon
C_grid = np.logspace(-2, 1, 25)
run_lasso(X, y, comment, n_samples, n_feat,
n_feat_relevant, C_grid=C_grid)
alpha: 0.0100 acc: 0.94 active_coefs: 40 alpha: 0.0133 acc: 0.94 active_coefs: 40 alpha: 0.0178 acc: 0.94 active_coefs: 39 alpha: 0.0237 acc: 0.95 active_coefs: 39 alpha: 0.0316 acc: 0.95 active_coefs: 35 alpha: 0.0422 acc: 0.95 active_coefs: 25 alpha: 0.0562 acc: 0.95 active_coefs: 19 alpha: 0.0750 acc: 0.95 active_coefs: 12 alpha: 0.1000 acc: 0.94 active_coefs: 10 alpha: 0.1334 acc: 0.94 active_coefs: 8 alpha: 0.1778 acc: 0.94 active_coefs: 8 alpha: 0.2371 acc: 0.93 active_coefs: 8 alpha: 0.3162 acc: 0.92 active_coefs: 8 alpha: 0.4217 acc: 0.89 active_coefs: 8 alpha: 0.5623 acc: 0.84 active_coefs: 8 alpha: 0.7499 acc: 0.78 active_coefs: 6 alpha: 1.0000 acc: 0.71 active_coefs: 3 alpha: 1.3335 acc: 0.61 active_coefs: 3 alpha: 1.7783 acc: 0.51 active_coefs: 2 alpha: 2.3714 acc: 0.40 active_coefs: 2 alpha: 3.1623 acc: 0.21 active_coefs: 2 alpha: 4.2170 acc: -0.01 active_coefs: 0 alpha: 5.6234 acc: -0.01 active_coefs: 0 alpha: 7.4989 acc: -0.01 active_coefs: 0 alpha: 10.0000 acc: -0.01 active_coefs: 0 40 257.926430562 124.531244884 108.997057085 75.3178395861 64.4613934571 58.3681547567 39.705434732 6.76541315005 1.38440748688 1.3295185464 1.26029580981 1.18641696721 0.872586989065 0.822187337005 0.642076888446 0.583364864781 0.532313902143 0.37487020594 0.369299326617 0.365493311854 0.363450021274 0.330079475045 0.321739404554 0.31357492096 0.306167086407 0.261738855109 0.257064875627 0.201814622868 0.20029789534 0.193021207977 0.182120408073 0.170821703447 0.17026434987 0.0927879134536 0.0813540679751 0.0781248126016 0.044205632203 0.0314982467255 0.0249758350177 0.00606032877281 skipping 1 skipping 4 skipping 10 skipping 11 skipping 12 skipping 13 skipping 14 skipping 17 skipping 19 skipping 20 skipping 22 skipping 23 skipping 24
comment = "10 correlated vars at ~95% / dataset: 10/40 relevant variables, linear ground truth, some noise"
rs = np.random.RandomState(1)
n_samples = 1000
n_feat = 40
n_feat_relevant = 10
epsilon = rs.randn(n_samples)
true_coefs = rs.randn(n_feat)
true_coefs[n_feat_relevant:] = 0
X = rs.randn(n_samples, n_feat)
n_corr_feat = 10
cov = np.ones((n_corr_feat, n_corr_feat)) * .95
cov[np.diag_indices(n_corr_feat)] = 1
X_corr = rs.multivariate_normal(mean=np.zeros((n_corr_feat)), cov=cov, size=n_samples)
X[:, 0:n_corr_feat] = X_corr
y = (true_coefs * X).sum(axis=1) + epsilon
C_grid = np.logspace(-2, 1, 25)
run_lasso(X, y, comment, n_samples, n_feat,
n_feat_relevant, C_grid=C_grid)
alpha: 0.0100 acc: 0.90 active_coefs: 40 alpha: 0.0133 acc: 0.90 active_coefs: 40 alpha: 0.0178 acc: 0.90 active_coefs: 40 alpha: 0.0237 acc: 0.90 active_coefs: 40 alpha: 0.0316 acc: 0.90 active_coefs: 31 alpha: 0.0422 acc: 0.90 active_coefs: 26 alpha: 0.0562 acc: 0.90 active_coefs: 16 alpha: 0.0750 acc: 0.90 active_coefs: 11 alpha: 0.1000 acc: 0.90 active_coefs: 7 alpha: 0.1334 acc: 0.90 active_coefs: 5 alpha: 0.1778 acc: 0.90 active_coefs: 5 alpha: 0.2371 acc: 0.90 active_coefs: 5 alpha: 0.3162 acc: 0.90 active_coefs: 5 alpha: 0.4217 acc: 0.89 active_coefs: 5 alpha: 0.5623 acc: 0.88 active_coefs: 5 alpha: 0.7499 acc: 0.87 active_coefs: 4 alpha: 1.0000 acc: 0.83 active_coefs: 4 alpha: 1.3335 acc: 0.76 active_coefs: 3 alpha: 1.7783 acc: 0.63 active_coefs: 2 alpha: 2.3714 acc: 0.39 active_coefs: 2 alpha: 3.1623 acc: -0.00 active_coefs: 1 alpha: 4.2170 acc: -0.00 active_coefs: 0 alpha: 5.6234 acc: -0.00 active_coefs: 0 alpha: 7.4989 acc: -0.00 active_coefs: 0 alpha: 10.0000 acc: -0.00 active_coefs: 0 40 60.6621438734 25.6344653953 18.044090156 10.8009979743 9.4966963324 5.58853513924 5.27526463266 4.70238054406 3.56092827632 1.5709739911 1.51908251505 1.31671870707 1.13331713008 0.942980337959 0.671334026061 0.527527958679 0.516166975827 0.515060297813 0.45746543492 0.454561489988 0.398878294933 0.390650496877 0.35151437345 0.328316074233 0.304453208307 0.286492169873 0.240840246415 0.23451903018 0.233926076692 0.204222907567 0.199829895486 0.199651203146 0.152414067698 0.14480598684 0.128502593025 0.0738539509642 0.058806834594 0.0433177491567 0.0175832712395 0.00053283110911 skipping 1 skipping 2 skipping 3 skipping 10 skipping 11 skipping 12 skipping 13 skipping 14 skipping 16 skipping 19 skipping 22 skipping 23 skipping 24
comment = "4 groups of 10 correlated vars at ~95% / dataset: 40/40 relevant variables, linear ground truth, some noise"
rs = np.random.RandomState(1)
n_samples = 1000
n_feat = 40
n_feat_relevant = 40
epsilon = rs.randn(n_samples)
true_coefs = rs.randn(n_feat)
true_coefs[n_feat_relevant:] = 0
#X = rs.randn(n_samples, n_feat)
n_corr_feat = 10
cov = np.ones((n_corr_feat, n_corr_feat)) * .95
cov[np.diag_indices(n_corr_feat)] = 1
X_corr = rs.multivariate_normal(mean=np.zeros((n_corr_feat)), cov=cov, size=n_samples)
X[:, 0:10] = X_corr
n_corr_feat = 10
cov = np.ones((n_corr_feat, n_corr_feat)) * .95
cov[np.diag_indices(n_corr_feat)] = 1
X_corr = rs.multivariate_normal(mean=np.zeros((n_corr_feat)), cov=cov, size=n_samples)
X[:, 10:20] = X_corr
n_corr_feat = 10
cov = np.ones((n_corr_feat, n_corr_feat)) * .95
cov[np.diag_indices(n_corr_feat)] = 1
X_corr = rs.multivariate_normal(mean=np.zeros((n_corr_feat)), cov=cov, size=n_samples)
X[:, 20:30] = X_corr
n_corr_feat = 10
cov = np.ones((n_corr_feat, n_corr_feat)) * .95
cov[np.diag_indices(n_corr_feat)] = 1
X_corr = rs.multivariate_normal(mean=np.zeros((n_corr_feat)), cov=cov, size=n_samples)
X[:, 30:40] = X_corr
y = (true_coefs * X).sum(axis=1) + epsilon
C_grid = np.logspace(-2, 1, 25)
run_lasso(X, y, comment, n_samples, n_feat,
n_feat_relevant, C_grid=C_grid)
alpha: 0.0100 acc: 0.97 active_coefs: 39 alpha: 0.0133 acc: 0.97 active_coefs: 39 alpha: 0.0178 acc: 0.97 active_coefs: 38 alpha: 0.0237 acc: 0.97 active_coefs: 34 alpha: 0.0316 acc: 0.96 active_coefs: 30 alpha: 0.0422 acc: 0.96 active_coefs: 21 alpha: 0.0562 acc: 0.96 active_coefs: 18 alpha: 0.0750 acc: 0.96 active_coefs: 16 alpha: 0.1000 acc: 0.96 active_coefs: 16 alpha: 0.1334 acc: 0.96 active_coefs: 16 alpha: 0.1778 acc: 0.95 active_coefs: 15 alpha: 0.2371 acc: 0.95 active_coefs: 15 alpha: 0.3162 acc: 0.94 active_coefs: 15 alpha: 0.4217 acc: 0.94 active_coefs: 15 alpha: 0.5623 acc: 0.92 active_coefs: 15 alpha: 0.7499 acc: 0.90 active_coefs: 14 alpha: 1.0000 acc: 0.86 active_coefs: 13 alpha: 1.3335 acc: 0.79 active_coefs: 12 alpha: 1.7783 acc: 0.69 active_coefs: 11 alpha: 2.3714 acc: 0.54 active_coefs: 9 alpha: 3.1623 acc: 0.29 active_coefs: 7 alpha: 4.2170 acc: -0.00 active_coefs: 1 alpha: 5.6234 acc: -0.00 active_coefs: 0 alpha: 7.4989 acc: -0.00 active_coefs: 0 alpha: 10.0000 acc: -0.00 active_coefs: 0 40 81.5686355203 58.6753218022 50.0765350181 41.8061746787 32.6343114648 28.6260353174 26.1839299049 23.0200828076 22.6768253623 21.0208291367 20.8076278124 17.6690442253 16.975203842 15.379432348 14.3841389163 8.02913430806 7.9107278857 7.87871232811 7.3431442434 6.54663563282 6.34458270121 5.00539018141 4.97859099563 4.71238681166 4.56811960159 3.76896169615 3.74942146693 3.37186480891 2.7923976555 2.75676190176 2.56485061035 2.17410595426 1.94214277231 1.92139368417 1.62265205629 1.52795148566 1.49487709407 1.07161445818 0.492519587797 0.0303378711099 skipping 1 skipping 8 skipping 9 skipping 11 skipping 12 skipping 13 skipping 14 skipping 23 skipping 24
comment = "4 groups of 10 correlated vars at ~95% / dataset: 40/40 relevant variables, linear ground truth, NO noise"
rs = np.random.RandomState(1)
n_samples = 1000
n_feat = 40
n_feat_relevant = 40
#epsilon = rs.randn(n_samples)
true_coefs = rs.randn(n_feat)
true_coefs[n_feat_relevant:] = 0
X = rs.randn(n_samples, n_feat)
n_corr_feat = 10
cov = np.ones((n_corr_feat, n_corr_feat)) * .95
cov[np.diag_indices(n_corr_feat)] = 1
X_corr = rs.multivariate_normal(mean=np.zeros((n_corr_feat)), cov=cov, size=n_samples)
X[:, 0:10] = X_corr
n_corr_feat = 10
cov = np.ones((n_corr_feat, n_corr_feat)) * .95
cov[np.diag_indices(n_corr_feat)] = 1
X_corr = rs.multivariate_normal(mean=np.zeros((n_corr_feat)), cov=cov, size=n_samples)
X[:, 10:20] = X_corr
n_corr_feat = 10
cov = np.ones((n_corr_feat, n_corr_feat)) * .95
cov[np.diag_indices(n_corr_feat)] = 1
X_corr = rs.multivariate_normal(mean=np.zeros((n_corr_feat)), cov=cov, size=n_samples)
X[:, 20:30] = X_corr
n_corr_feat = 10
cov = np.ones((n_corr_feat, n_corr_feat)) * .95
cov[np.diag_indices(n_corr_feat)] = 1
X_corr = rs.multivariate_normal(mean=np.zeros((n_corr_feat)), cov=cov, size=n_samples)
X[:, 30:40] = X_corr
#y = (true_coefs * X).sum(axis=1) + epsilon
y = (true_coefs * X).sum(axis=1)
C_grid = np.logspace(-2, 1, 25)
run_lasso(X, y, comment, n_samples, n_feat,
n_feat_relevant, C_grid=C_grid)
alpha: 0.0100 acc: 0.99 active_coefs: 35 alpha: 0.0133 acc: 0.98 active_coefs: 34 alpha: 0.0178 acc: 0.96 active_coefs: 33 alpha: 0.0237 acc: 0.94 active_coefs: 31 alpha: 0.0316 acc: 0.91 active_coefs: 26 alpha: 0.0422 acc: 0.88 active_coefs: 19 alpha: 0.0562 acc: 0.83 active_coefs: 17 alpha: 0.0750 acc: 0.80 active_coefs: 15 alpha: 0.1000 acc: 0.80 active_coefs: 13 alpha: 0.1334 acc: 0.80 active_coefs: 13 alpha: 0.1778 acc: 0.79 active_coefs: 13 alpha: 0.2371 acc: 0.78 active_coefs: 13 alpha: 0.3162 acc: 0.76 active_coefs: 13 alpha: 0.4217 acc: 0.73 active_coefs: 12 alpha: 0.5623 acc: 0.67 active_coefs: 11 alpha: 0.7499 acc: 0.58 active_coefs: 11 alpha: 1.0000 acc: 0.44 active_coefs: 7 alpha: 1.3335 acc: 0.29 active_coefs: 6 alpha: 1.7783 acc: 0.04 active_coefs: 2 alpha: 2.3714 acc: -0.01 active_coefs: 0 alpha: 3.1623 acc: -0.01 active_coefs: 0 alpha: 4.2170 acc: -0.01 active_coefs: 0 alpha: 5.6234 acc: -0.01 active_coefs: 0 alpha: 7.4989 acc: -0.01 active_coefs: 0 alpha: 10.0000 acc: -0.01 active_coefs: 0 40 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 15.6535597745 skipping 9 skipping 10 skipping 11 skipping 12 skipping 15 skipping 20 skipping 21 skipping 22 skipping 23 skipping 24
# print summary
for sim in simulations:
pval = sim['pvals'].min()
n_pval = np.sum(sim['pvals'] <= 0.05)
r2 = sim['acc_list'].max()
print(sim['comment'])
print(pval >= 0.05, pval, n_pval, r2)
print("")
# plot 1: r2 scores given the p-value
plt.figure(figsize=(6, 6))
for sim in simulations:
n_rel = sim['n_feat_relevant']
if n_rel == 0:
continue
pval = sim['pvals'][:n_rel].min()
n_pval = np.sum(sim['pvals'][:n_rel] <= 0.05)
r2 = sim['acc_list'].max()
plt.scatter(-np.log10(pval), r2)
plt.xlabel(r'significance [$-log_{10}(p)$]', fontsize=20, fontweight=150)
plt.ylabel(r'prediction [$R^2$]', fontsize=20, fontweight=150)
plt.grid(True)
ax = plt.gca()
plt.axvline(
-np.log10(0.05), color='red', linestyle='--', linewidth=3)
plt.annotate('p < 0.05', xy=(-np.log10(0.045), 0.03), color='red', fontsize=14)
ax.set_yticks([0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1])
ax.set_yticks(np.arange(0.01, 1, 0.01), minor=True);
# plot 2: r2 scores given the number of significant p-values relative
# to number relevant features
plt.figure(figsize=(6, 6))
for sim in simulations:
n_rel = sim['n_feat_relevant']
if n_rel == 0:
continue
pval = sim['pvals'][:n_rel].min()
n_pval = np.sum(sim['pvals'][:n_rel] <= 0.05)
r2 = sim['acc_list'].max()
plt.scatter(n_pval / n_rel, r2)
plt.xlabel(r'Proportion of p-values < 0.05', fontsize=20, fontweight=150)
plt.ylabel(r'prediction [$R^2$]', fontsize=20, fontweight=150)
plt.grid(True)
ax = plt.gca()
ax.set_yticks([0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1])
ax.set_yticks(np.arange(0.01, 1, 0.01), minor=True);
dataset: 10/40 variables relevant, linear ground truth, some noise False 1.26302476958e-18 11 0.722118442333 dataset: 20/40 variables relevant, linear ground truth, some noise False 6.30761429734e-20 17 0.861085349967 dataset: 30/40 variables relevant, linear ground truth, some noise False 9.04688139435e-28 25 0.932098782862 dataset: 40/40 variables relevant, linear ground truth, some noise False 9.04688139435e-28 34 0.944988438592 dataset: 10/40 variables relevant, linear ground truth, some noise False 6.25407738595e-267 11 0.924743235144 dataset: 20/40 variables relevant, linear ground truth, some noise False 1.98379691076e-307 21 0.964327764623 dataset: 30/40 variables relevant, linear ground truth, some noise False 1.98379691076e-307 30 0.972198689331 dataset: 40/40 variables relevant, linear ground truth, some noise False 1.98379691076e-307 39 0.978898424293 dataset: 10/40 variables relevant, linear ground truth, some noise False 2.22044604925e-16 11 0.999998653576 dataset: 20/40 variables relevant, linear ground truth, some noise False 2.22044604925e-16 20 0.999997887566 dataset: 30/40 variables relevant, linear ground truth, some noise False 2.22044604925e-16 30 0.999995333766 dataset: 40/40 variables relevant, linear ground truth, some noise False 2.22044604925e-16 40 0.999993155536 abs / dataset: 10/40 relevant variables, including 5 pathological ones, linear ground truth, some noise False 3.64460597918e-27 5 0.43249201706 square root / dataset: 10/40 relevant variables, including 5 pathological ones, linear ground truth, some noise False 1.51921318069e-281 11 0.863204401872 logn / dataset: 10/40 relevant variables, including 5 pathological ones, linear ground truth, some noise False 6.77553387848e-31 10 0.187750767237 exp / dataset: 10/40 relevant variables, including 5 pathological ones, linear ground truth, some noise only monotone transformation False 6.10445389692e-77 9 0.603196772268 dataset: 1/40 relevant variables linear ground truth + some noise False 3.17365709646e-06 4 0.351770845517 dataset: 0/40 relevant variables linear ground truth + some noise False 0.00618545389122 4 -0.232977557021 1/x / dataset: 10/40 relevant variables, including 5 pathological ones, linear ground truth, some noise opposite effect of log roughly; small values become gigantic True 0.0584401244368 0 -0.0120716048324 x^2 / dataset: 10/40 relevant variables, including 5 pathological ones, linear ground truth, some noise cube -> keep monotony; otherwise not -> False 2.18873539944e-14 6 0.13808398418 x^3 / dataset: 10/40 relevant variables, including 5 pathological ones, linear ground truth, some noise False 5.71336336946e-151 10 0.604666552499 x^4 / dataset: 10/40 relevant variables, including 5 pathological ones, linear ground truth, some noise False 0.00533179687848 2 -0.0260270483268 x^5 / dataset: 10/40 relevant variables, including 5 pathological ones, linear ground truth, some noise False 5.79269869944e-50 6 0.245828888167 3 correlated vars at ~50% / dataset: 10/40 relevant variables, linear ground truth, some noise False 5.04593948679e-268 11 0.918941812044 5 correlated vars at ~50% / dataset: 10/40 relevant variables, linear ground truth, some noise False 2.82151466631e-314 11 0.940517588658 10 correlated vars at ~50% / dataset: 10/40 relevant variables, linear ground truth, some noise False 2.48505320757e-314 12 0.919058355574 3 correlated vars at ~95% / dataset: 10/40 relevant variables, linear ground truth, some noise False 5.04593948679e-268 10 0.9177647 5 correlated vars at ~95% / dataset: 10/40 relevant variables, linear ground truth, some noise False 1.18459375281e-258 10 0.949337491812 10 correlated vars at ~95% / dataset: 10/40 relevant variables, linear ground truth, some noise False 2.17698845853e-61 12 0.901747976192 4 groups of 10 correlated vars at ~95% / dataset: 40/40 relevant variables, linear ground truth, some noise False 2.7000044484e-82 37 0.974570549784 4 groups of 10 correlated vars at ~95% / dataset: 40/40 relevant variables, linear ground truth, NO noise False 2.22044604925e-16 40 0.991527659962