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Abstract—It is shown how expectation maximization (EM) may as a message passing algorithm with a general local message
be viewed as a message passing algorithm in factor graphs. Incomputation rule was presented in [21], which is the basis of
particular, a general EM message computation rule is idenfied. the present paper. A similar approach was also pursued by

As a factor graph tool, EM may be used to break cycles in .
a factor graph, and tractable messages may in some cases beo Sullivan [22] and by Herzet et al. [14].

obtained where the sum-product messages are unwieldy. In a parallel development, Winn and Bishop made the
As an exemplary application, the paper considers linear Gas- important observation that variational inference can bdrga

sian state space models. Unknown coefficients in such modgise message passing form [23], [24], and similar observaticerew

rise to multipliers in the corresponding factor graph. A main  \44e also in [25] and [26]. In fact, EM message passing may

attraction of EM in such cases is that it results in purely Gaissian e viewed as a special case of variational message passin
message passing algorithms. These Gaussian EM messages afl® view peci variat ge passing

tabulated for several (scalar, vector, matrix) multipliers that [27]. However, EM is not specifically addressed (and not even

frequently appear in applications. mentioned) in [23]-[25].
Index Terms—Expectation maximization, factor graphs, mes- N this paper and its companion paper [28], we develop
sage passing. the EM algorithm as a general message passing technique
for factor graphs. This formulation may be helpful in seVera
|. INTRODUCTION different ways:

« EM may be used to estimate unknown parameters in a
factor graph model.

« EM may be used to break cycles in a factor graph.

The EM messages are tractable expressions in some

cases where the sum-product and max-product message

computation rules yields intractable expressions.

Tabulated EM messages for frequently occuring

nodes/factors allow the composition of nontrivial

Graphical models [1] in general and factor graphs [2]-[5]
in particular provide a notation for structured system ni®de
that helps to describe and to develop algorithms for detecti
and estimation problems. A large variety of algorithms can b *
viewed as message passing algorithms that operate by gassin
locally computed “messages” along the edges of the factor
graph. ¢

Expectation maximization (EM) [6]-[9] is an iterative tech : : - .
nique for parameter estimation which is widely used in stati Egci\/:tli%?]!thms without - additional - computations - or
tics and signal processing. EM is a standard tool for paramet ' I
estimation in graphical models [10], [11], but EM has nog:onversely, the _fIgX|b|I|ty of the fa<_:tor graph approach Sug
traditionally been viewed as a message passing algorithgﬁStS many variations and extensions of the EM algorithm

Examples in communications include turbo synchronizatidﬁelf’ ?]S will be discussed iq Secltion.\r/]I and inb[28]. Molre— |
[12]-[14], joint channel estimation and symbol detectib8]F over, t N EM message passing algorithm may be seam essly
[17], and distributed source coding [18] combined with sum-product and max-product message passing

» IN various ways.

This paper begins with a brief review of standard EM in
ection Il and a detailed development of message passing
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Some parts of this work were presented in preliminary fornil®y, [20], These examples also illustrate the use of tabulated EM

[21]. message computation rules. The derivation of the EM message
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for a particular application is often not trivial and tables DfA
of precomputed EM messages can therefore be helpful_. In Yo
Section V, we present tables of EM messages out of various Ie)
“multipliers” that arise naturally in linear Gaussian mtxe 4 en(9)
with unknown coefficients.

The proofs of these tabulated message computation rules [] fs
are given in Appendices C-E. Appendices D and E rely on
Gaussian sum-product messages tabulated in [5], whidhefurt
illustrates the use of tabulated message computation. rules

Some concluding remarks are offered in Section VI. Fig. 1. Factor graph of (7) with EM message(®).

The companion paper [28] begins with discrete variables
and makes a tour through EM algorithms ranging from hidden

X

Markov models to independent factor analysis. 2) Expectation step: evaluate
In this paper, we will use Forney-style factor graphs (also k A Ak
called normal factor graphs) as in [4] and [5], a variation ROE /If(x,e( ))log f(x,6) de. (4)

due to Forney [29] of factor graphs as in [3]. The reader
is specifically referred to [5] for details of the factor ghap
notation. In particular, we will use arrows (as W and 1)

(The base of the logarithm is immaterial.)
3) Maximization step: compute

for sum-product messages, and we will use capital lettars fo O+ 2 argmax £ (6). (5)

unknown variables (i.e., functions of the configurationcg)a 4

and lower-case letters for particular values of a variable. ~ 4) Repeat 2-3 until convergence or until the available time
From Section IV onward, multivariate Gaussian distribu- is over.

tions will be prominent. Such distributions will be paragret The main property of the EM algorithm is

ized eit_her by a mean vector a_nd“a cpvariancg matriX ?1r f(é(k+1)) > f(é(k))_ (6)
by the inverse covariance matrix (“weight matri¥ly = V'
and the transformed mean vectdfm. For Gaussian mes- For the reader’s convenience, a concise proof of (6) is given
sages, these parameters will be denoted%yv etc., as in Appendix A. In many applications, the expressions (4) and
in [5]. We will sometimes allow messages to be degenerdf® turn out to be quite manageable and simpler than thetdirec
(non-integrable) “Gaussians?—3 (=" We—22"Wm) \yhere the maximization (1).

weight matrix is positive semi-definite and singular rather In typical applications,f(z,6) is extended tof(x,y,6),
than positive definite. wherey is known and fixed. The functiofi(z, y, ) is either a
probability density over: andy with paramete# or it is a joint
probability density over:, y, andd. In the EM literaturey is
called the observed data,is called the missing (unobserved)

We begin by reviewing the EM algorithm in a setting whiclijata, and the paifz, %) is called the complete data.
is suitable for the purpose of this paper. Suppose we wish to

Il. REVIEW OF THEEM ALGORITHM

find 1. EM AS A MESSAGEPASSING ALGORITHM
Omax = argmax f(0) (1)  We now consider EM in factor graphs. We will do this in
o several steps. The resulting message passing algoritHrbawil
for some functionf : R® — R. We assume thaf() is the summarized in Section IlI-E.
“marginal” of some real-valued functiofi(z, 6), i.e., We henceforth assume that all logarithms are natural loga-
rithms.
— [ tab)ds 2)

A. Trivial Factor Graph
where [, g(z) dz denotes integration af(x) over the whole e first consider a trivial factorization
range of z. (The integral in (2) may be replaced by a
sum if z is discrete, with obvious corresponding changes in f(x,0) = fa(0)fs(z,0), )
subsequent expressions.) The functitfx, 6) is assumed to the factor graph of which is shown in Fig. 1. (In typical
be nonnegative: applications,fa (9) is either a prior probability or constant.) In
this setup, the EM algorithm amounts to iterative compatati
f,0) 20 forallz and allf. (3) of a dow%ward messgag%k) and an upward messag@("l)oas
In addition, we assumé& < f(f) < oo for all 9. In follows.
pther wqrds, for any fixgd9, f(z,0)/f(0) is a prot_)abil— Upward message (EM message)(?) with
ity density overz. We W|_II also assume that the integral k)
[ f(x,0)log f(z,0") dz exists for allf, 6. n(60) 2 [, fa(x, 0t )lcig fB(,0) dx ®)
The EM algorithm attempts to compute (1) as follows: [, fe(x,0%)) dx
1) Make some initial guesg(©. = B,, [log f3(X,0)], (9)




whereE,, denotes the expectation with respect to the proba- fa
bility distribution

e Iod®) e Jhap
pi(x|0) = — (10) ©: p O 0
I, f5(a, 00 da pem® §em@)
Downward message: X, :r——— e ---1: X4
60D = argmax (fa(6) - @) (11) = x,
:  Je o s
= argmax (log fa(6) +n(0)) . (12) e

The equivalence of this message passing algorithm with (@y- 2. Factor graph of (17), a refinement of Fig. 1.
and (5) may be seen as follows. From (4) and (5), we have

5(k+1)
0 A the factor graph of which is shown in Fig. 2. In this case, (9)
= argmax / f(x, 0% log f(x,0) dx (13) splits into
(4 T
_ argmax/ FA(0D) fi(a, 0F) n(01,02) = EPB[log (fc(Xth,91)fD(X2,X3,92))] (18)
o e =n1(61) +n2(02) (19)
. log(fA 0)fs(z, 9)) dxz (14) with
= argmax/ fo(x,0%)) 1 (61) £ Epg [log fo(X1, X2, 601)] (20)
0 T
and
! 0)+1 0))d 15
( og fA( ) + 0og fB(xv )) xz ( ) ,'72(92) é EPB [10g fD(XQ, )(37 92)] ] (21)
— argmax (10g Fa(0) The EM message”?) thus factors as
o eN(01,02) 6771(91)6772(92)’ (22)

(16) and the factorg™ (?) ande™(?2) may be viewed as upward
messages along the ed@e and©-, respectively, in the factor

n [, fe(z,0%)log fg(x,0) dz
fm/ fB(xlvé(k)) dx’

which is equivalent to (8) and (12). graph of Fig. 2. The downward messages in Fig. 2 are the
Some remarks: estimates
1) The quantityn(d) may be viewed_ as a “Iog-(_jpmain” (ggkﬂ)’éékﬂ)) = argmax f (01, 02)e™ ) em(%2) (23)
summary of fg. The corresponding “probability do- (61,62)

main” summarye”(?) is consistent with the semanticsas is obvious from (11) and (22).

of factor graphs where messages are “summaries” ofThe expectation in (20) may be computed with respect to
factors (cf. (11) and (22)). We will refer t&"?) as the the probability distribution

EM message

2) A constant may be added #g¢) without affecting (12). pp(x1,22|60) £ / pB (21, 20, 230" das, (24)

3) If fa(0) is constant, the normalization in (8) can be
omitted. More generally, the normalization in (8) can bwhich is the marginal ofpg with respect to the arguments
omitted if f (0) is constant for alb such thatf(6) # 0 of fc, and the expectation in (21) may be computed with
(i.e., if fa(P) expresses a constraint); this case occurespect to the probability distribution

3

in many applications. A) A ACK)
4) Nothing changes if we introduce a known observation  PB(%2, 3|0 ):/ pB(21, 22, 3|0 dz1 (25)
(i.e., a constant argument)nto f such that (7) becomes = . i o )
Fz,y,0) = faly,0)fs(z,y,0). which is the marginal ofpg with respect to the arguments
v 9 v Of fD_

Going through this derivation, we note that the generaliza-

B. Nontrivial Factor Graph tion to an arbitrary factor graph fofg is immediate. Note,

We now come to the heart of the matterfifs a vectorg = in particular, that the splitting of the expectation in (19)
(61,02,...), and if fg has a nontrivial factor graph, then thedoes not assume that the factor graphfgfis cycle-free. If
EM message”?) splits into messagag ("), ¢m2(%2) that g(z1,...,2m,0,) is a generic node/factor in the factor graph
can be computed “locally” in the factor graph . of fg, we obtainn,(6,) as in (1.1) and (1.2) in Table | with

To see this, consider the following example (which actually . .
covers the general case). let= (6, 6,), letz = (x1, 22, z3), Pocal(T1, - - - Tm|0) = / pe(z]0) dz (26)
and let Tz .2 fixed

fe(2,0) = fc(z1,22,61) fo (22, 23, 02), (17) x /Mlmzmﬁxede(x,O) dz,  (27)



TABLE |
EM MESSAGEe"9(%a) OUT OF A GENERIC NODH FACTORg. f
A
Yo |6 10,
0, e 0,
+é dem(01) |4en2(62) $enn(6)
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Fig. 3. Application of EM to general state space model.
x4 X |4 g PP g p
X, EX
19(09) = Epgea [108 (X1, - -+ Xom 0] (1) passing in the factor graph ofy. This applies, in particu-
gl el v lar, to the standard case whefg(f:,60,,...) expresses the
= /;1  Pocal(@1 @] 0) equality constrain®; = ©; = ..., which we will encounter
g g(x1, .-, Tm,0g) dwy - dam  (1.2) in Section V.
with . .
( ) E. Putting it Together
p'“:c' x(lm h x"; b)) T (e) - T (@) (13) Let us summarize the findings of this section by considering
JiELs e Bma Bg ) X R T HXon Lm ' the factor graph of Fig. 3, which is an easy generalization
where‘ﬁx,Z denotes the incoming sum-r}roduct message along of Fig. 2. Note that removing the edg@l, ...,©, cuts
the variable/ edf’@:‘ computed fo'(? =90 o the factor graph (Fig. 3) into two cycle-free components. Le
A constant scale factoty in g results in a scale factof in A A A
Ao sele ooy i g S N N I R VA
Suppose that we wish to find

0 = argmax f(0) / fe(z,y,0)dx (30)
6 T

where " denotes equality up to a scale factor. Note thabr fixed knowny. In this case, the EM algorithm applies as
the missing scale factor in (27) can be locally recovered hyllows:

integrating (27) over; ...z, It remains to make the step 1) Make some initial gues = (61, ..., 0,).

from (27) to (1.3) in Table I. 2) Perform forward-backward sum-product message pass-
ing through the factor graph gz (with 6, plugged into

C. Using Sum-Product Message Passing for the Local Expec- f,for¢=1,...,n).
tations 3) Compute the EM message8' (?), ..., e™(®) as in

If the factor graph offs(x, ) is cycle-free (after removing Table I. In this case, we obtain
the edges foro = ¢), then the margingls (27) can be_ 10(0¢) = Epeea [ 10g fo(Xe—1, Xe, ye, 00)] (31)
computed by sum-product message passing (see [4], [5]) in o N
this factor graph. As above, lgta1, . .., xm,0,) be a generic where the expectation is with respect to the probability
node/factor in the factor graph ofg. Then (27) may be density

computed as in (1.3) in Table I, wherg'y, denotes the Procal(@e—1, ze|ye, 0) o< fol@er, e, e, 00)
incoming sum-product message along the variable/edge — —
computed for® = 4. e () () (32)
For example, we can write (24) as where /x,_, and zx, denote sum-product messages.
) . . 4) Compute new estimates
pe(w1,22]0) o< [ fo(wy,22,01) fp (02, 23,02) dxs  (28)

s 6=(6y,...,0,) (33)
= fo(z1,22,01) Tx, (x2) (29) = argmax fa(01,...,0,)em @) . ..emn)  (34)
(01,...,0)

where 7y, is the right-to-left sum-product message along
the edgeX, computed for© = 6. (A constant message
Tix,(z1) = 1 may be added as a factor in (29).)

If fo has a cycle-free factor graph, this maximization
may be carried out by max-product message passing in
that factor graph.
5) Repeat 2—4 until convergence or until the available time
D. Using Max-Product Message Passing for the Maximization s over.
If fo can be factored into a cycle-free factor graph, then the All this applies to general factorizations ofy and fg
maximization (23) (and its obvious generalization to gaherprovided that the resulting factor graphs (without the edge
factor graphs) can be carried out by max-product message,... 9,) are cycle-free.



If the factor graphs of » and fg are not cycle-free, the same N(0,0%)
local computation rules can be used nonetheless and seem to Uy,
work well in some applications, cf. [12]-[18].

In many cases, the computation of an EM message ac-
cording to Table | requires substantial additional worke-Pr

computed tables of such messages for frequently occuring Xp1 0 X

nodes/factors can therefore be useful, as will be demadgsira ] 1A l =

in Sections IV and V. N I

F. An Issue: Hard Constraints and Grouping ¢_L{X] em(%)*f{a
Nodes in factor graphs often express “hard” constraints [4] N(0,0%) i N(0,0%):

[5]. For example, the constraift; = X, (for real variables ) Vle— ] R =N

X1 and X5) may be expressed by the node/factor; — 5), 9k—1f N L ka LT A T

where § denotes the Dirac delta. It turns out that the EM Yh—1 k-1 m 9k

message computation rule of Table | should not be applied ©x-1 O

to such constraint nodes; the typical outcome of the attempt. ..

will be a degenerate EM message (%) that expresses the =] =

constrainto, = és, which stalls the EM algorithm.

For example, assume thaf;, Xo, © are real variables and Fig. 4. Linear state space model with unknown coefficientore® = ©1 =
the node/factor ©9 = ... and white Gaussian input signél , Us, ... The figure shows one
section of the factor graph. The multiplier node denotesitimer product
T b . .
1. 25.0) = S(z1 — 250 35 O Xk._The labelN (m, 0?) denotes a scalar Gau53|_an fac?or with mean
g( b2 ) ( ! 2 ) ( ) and variances2. The EM message computation rule is applied to the dashed

expresses the constraiit; = X20. Then boxes.

77(9) X / / g(fEhl'g,é)ﬁX] (xl)ﬁ)ﬁ(xQ)
T1 /T2 We assume that the input sigri@, U, . . . is zero-mean white
-log g(x1, 72, 0) dwyds (36)  Gaussian noise with varianeg,. We observe a noisy scalar

= / ﬁxl (xzé)ﬁ))@ (z2) log Q(CCQé, x2,0)dxs  (37) output signal
. Vi = 07X}, + 7, (42)

= / x, (220) Wx, (v2)log 6(x2(0 — 0)) dw2, (38) where® is an unknown real column vector and whefe is
T _ _ _ zero-mean white Gaussian noise with variangée From the
which is obviously pathological and illustrates the issue.  gpservations}, = yi, k = 1,2,..., N, we wish to estimate

It is usually easy to avoid this problem by grouping cong specifically, we wish to compute the maximum-likelihood
straint nodes with adjacent “soft” factors/nodes, as wél bastimate

illustrated in Sections IV and V.

0 = argmax p(y|6) (43)
IV. EXAMPLES: IDENTIFICATION OF LINEAR SYSTEMS o
The following two examples arise in many applications. The = arggnax/ / /p(u, x,y, z|0) dz dzx du, (44)
use of EM to problems of this kind is not new, but neither weres
is it trivial [33]-[35]. In communications, the example ofwherey is defined ag/ = (y1,...,y~) and whereu, z, z are

Section IV-A may arise in channel estimation and the exampdefined analogously.
of Section IV-B may arise in estimating the parameters ofnon The factor graph of this system model, i.e., of
white Gaussian noise.

p(u,z,y,2|0)
A. FIR Filter Identification with Unknown Ir_1put Signal — (o) Hp(yk|xk, 2k, O)p(zr)p(wr | o1, uk)p(ur), (45)
Let X, € R", £k =0,1,2,..., N, be the timek state of a k=1

finite impulse response (FIR) filter with random input signE}J5

e shown in Fig. 4. Note that the unknown coefficient vector
U €R, k=1,2,...,N. Specifically,

© appears in copie®y, k =1,2,..., N (one copy for each

X = AX5_1 + bUs (39) time k) with an equality constrair®; = ... = © . Note also

. . that the factorsp(zi|xg—1,ur) and p(yx|xk, 2k, 0) express
with 7 x n matrix the constraints (39) and (42), respectively; only the scala

e ( 0 0 ) (40) Gaussian factorg(uy) and p(zi) are “soft” factors without

I,—1 O Dirac deltas. The factop(zy) (not shown in Fig. 4) is of

secondary importance and may even be omitted in practice.
Note that the edge®, k = 1,2,..., cut the factor graph
b=(1,0,..., O)T . (41) into two cycle-free components. The equality constrathts=

(wherel,,_; is the(n—1) x (n — 1) identity matrix) and with



TABLE Il
GAUSSIAN MESSAGE PASSING BACKWARDS THROUGH A MULTIPLIER
X AND @ ARE REAL COLUMN VECTORS ANDS = ©7 X IS A SCALAR.
N (m, %) DENOTES A SCALARGAUSSIAN FACTOR WITH MEAN m AND
VARIANCE ¢2. THE INCOMING SUM- PRODUCT MESSAGE,U,X IS
GAUSSIAN WITH PARAMETERSWX AND iy .

In summary, both the expectation step and the maximization
step of the EM algorithm can be carried out by Gaussian
message passing.

B. Autoregressive Filter Identification

Consider the following state space representation of an
autoregressive model. Let the stdfg e R™, £k =1,2,..., N
evolve according to

X i » S {:I i X = AXj—1 + Uy (48)
P : ,
| N(ms,o%) ! with .
Lo me e J b=(1,0,...,0) (49)
and withn x n matrix
() is Gaussian with T
= © 50
T . ae=( %) (50)
93
Wo e = XMS (1.2) where® is an unknown column vector of dimension We
o% assume that the input signél , Us, . . ., which is often called

“innovation”, is zero-mean white Gaussian noise with vace
o?. We observe a noisy scalar output signal

with Vx andmx given by

Vil =Wy +667 /0% (11.3)

(11.4) Ve = (1,0,...,00" X}, + Zy, (51)

Wxmx = WXM’X + éms/og.

where 71, Z,, ... is zero-mean white Gaussian noise with
variances%. From the observatiol, = v, k =1,2,..., N,
we wish to estimat®; specifically, we wish to compute the

Oy = ... at the bottom of Fig. 4 correspond #a in Figures maximum likelihood estimate

2 and 3; everything else in Fig. 4 correspondgian Figures

2 and 3. R 0 = argmax p(y|0) (52)
With estimated),, plugged in, the upper part (thg; part) ¢

of Fig. 4 becomes a standard linear Gaussian factor graph, — argmax/ / /p(u’m’y7z|9) dz dx du (53)

where sum-product message passing amounts to Kalman fil- 0 udz Jz

tering/smoothing [5, Section V].

We now need to compute the EM message$’). Heeding
the advice of Section llI-F, we group the multiplier node
(which is a hard constraint) with the adjacent soft nodetiac "
p(zr) x e */(29%) as indicated by the dashed boxes i
Fig. 4; this grouping (and integrating/ marginalizing otee
variables inside the box) results in the factor

with y £ (y1,y2,-..,yn) etc.

The factor graph op(u, z,y, z|6) is shown in Fig. 5. As
n the previous example, the unknown parameter ve€ior
igppears in copie®; = ... = Oy, one copy for each timé.

Again, for fixed® = 9 th|s factor graph is linear Gaussian
and cycle-free.

The EM message computation rule of Table | may be
applied to the dashed box in Fig. 5. It turns out that the
EM message"+(s) is Gaussian W|th meaime, and weight
matrix (inverse covariance mathek given by (11.7) and
(111.8) in Table III.

Again, we have obtained a purely Gaussian message passing
which is perfectly well-behaved. Note that the missing scahlgorithm. Apart from the EM messagé+(?+) all messages
factor in (47) can be safely ignored, cf. Table I. can be computed as described in [5, Section V].

As it turns out, the EM messag#*(?x) out of the dashed
box g, in Fig. 4 |s Gaussian with weight matrix (inverse
covariance matrlx)W@k and mean vecto‘ﬁ@k as glven by
(I.1)-(1.4) in Table Il with mgs = yx and 0% = o%. The
proof of (11.1)-(11.4) is given in Section V.

It remains only to compute new estimatés by max-

9k (Th, Yy Ok)

1
SOF ox + 21 — i) e/ 29%) iz,

. V2rwoy

0Tz —u)2 /(202
x e (O z—yr)~/( UZ)’

(46)

(47)

C. Remarks

We conclude this section with some remarks on these
examples.

1) In order to make the described algorithms work in

product message passing through the chain of equality con-
straints at the bottom of Fig. 4. Since the incoming EM
messages”+(?s) are Gaussians, max-product message passing
coincides with sum-product message passing with message
computation rules as in Table 2 of [5].

practice, it is necessary to pay attention to the scheduling
of the message updates. A serial (left-to-right) sched-
ule may actually work better than alternating forward-
backward sweeps in the two components (corresponding
to fa and fg) of the factor graph, cf. [30].



il applicable. The general setup is shown in Table Ill and the

Te"k(ek) results are given in Tables Il and IV. In all cases, we have a
multiplier U = A(6©)X, whereA(O) is a matrix that depends

on O, grouped withY = U + Z, where Z is zero-mean

Gaussian with covariance matrix; = W, L (or o2 in the

scalar case). In all cases, we assume that Gaussian messages

Tix and 'y arrive via the edgeX andY’, respectively; these

incoming messages are parameterized by the mean vectors

mx andmy and the covariance matricd_éx = ng and

<173/ = W; ! respectively. The following cases are considered:

E 1) Inner product:A(©) = ©7, both ® and X are real
__________________ column vectors (of the same dimension), and WGtk
©TX andY are real scalars.
Eﬂ This case is a generalization of Table II, as will be
discussed at the end of this section.
2) Real scala© times real column vectoX: A(©) = ©
D—'[{[ and bothU = ©X andY are column vectors.
Some pertinent properties of the trace operator’)‘are
recalled in Appendix B.
3) Componentwise product (denoted By® X) of real
Fig. 5. LinTear state space mode_l 'for autoregressive f_ilteh Wi= c = column vector® and X: A(@) _ diag(@), a diagonal
(1,0,...,0)*, with unknown coefficient vecto®, and with scalar white . . ;
Gaussian innovatiort/1, Us, . .. The figure shows one section of the factor matrix with the elements ad on the dmgonal' and both
graph. The multiplier node denotes the produtt©)X; (50). The EM U=0¢0X andY are column vectors.
message computation rule (111.7) and (l11.8) applies to tashed box. 4) Autoregression®, X,Y are column vectors ifR™ and
A(©) is the square matrix (50) (which is essentially
a companion matrix). In additionZ is a zero-mean

2) The point of these examples is only to illustrate the  Gaussian vector with covariance matrix

Xg—1

Yk

message passing view of the EM algorithm; we are not oz 0 ... 0
concerned here with analyzing and comparing different )
approaches to linear-system identification [31]. Vz = 0 0 Sl (54)

3) Tabulated message computation rules (as in Table Il) can
greatly simplify the derivation of EM message passing

algorithms. i.e., Z is effectively a scalar that affects only the first
componenfy; of Y.
V. GAUSSIAN MESSAGEPASSING 5) General real matrixd times real column vectorX:
THROUGH MULTIPLIER NODES A(@) = ("‘) and bOthU = ®X andY are CO|umn
_ A subs_tantial part of trgditional signal prqcegsiqg is Bsse ¥?1(:0;§}nbo| %" in (I19) and (Ill.10) denotes the
tially equivalent to Gaussian message passing in linearetsod Kronecker product, cf. (124)—(125). More about this

[5]. Unknown coefficients in such models introduce mulgpli

) : . - case is said below.
nodes into the corresponding factor graphs as is exempln‘leﬁ ¢ | _ | . ial
by Figures 4 and 5, The case of scala® times scalarX is a common specia

The EM message out of such multiplier nodes properﬁf"se of all these cases and does not need to be considered
grouped with “soft’ Gaussian nodes/factors as in FiguresgParately. _
and 5, is invariably Gaussian (up to a scale factor), but the!n the cases 1—774(10,)vyhe® is a column vector (Oré scalar),
computation of its mean and its covariance matrix (in termié® EM message”” is Gaussian with mean vectore and

of the parameters of the incoming Gaussian messages) weight matrix (inverse covariance matritye as given in
be involved, cf. Appendices C-E. It is therefore helpful tgable Iil.

tabulate such messages as exemplified by Table II. In Case 5, where is a matrix, we need the following
However, such multiplier nodes come in surprisingly marfjotation. LetB be anym x n matrix and let
versions: scalar times scalar, scalar times vector, inreyzt by

of two vectors (as in Fig. 4), general matrix times vector, B_ . (55)
products involving matrices with a special structure (as in o :
Fig. 5), etc. Moreover, the grouping of such multiplier nede b

with suitable soft factors/nodes is another source of &lyu a4 the decomposition a8 into its rows. We will use both the

endless variety. _ row stack vector
We will therefore confine ourselves to a small number

of cases which appear to be particulary useful and widely rvect(B) = (b1, .-y bm) (56)



TABLE Il TABLE IV
GAUSSIAN BACKWARD EM MESSAGESe”(?) THROUGH SOME MULTIPLIER  COMPUTATION OF MEANSmMx AND my AND COVARIANCE MATRICES Vx
NODES, SEESECTIONV. THE EM MESsAGEe™(?) |s ALWAYS GAUSSIAN AND Vv 7 IN TABLE IlI.
(UP TO A CONSTANT SCALE FACTOR WITH PARAMETERSWg AND me AS
STATED. SEE ALSOTABLE IV.

Auxiliary quantities:

Wx = Wx + A0 (V2 + Vy) AG)  (va)

© ‘—/Y = A(é)‘_/)XA(é)T +Vz (Iv.2)
| |
! ! ~ — -1
| N(O,VZ) Wy = (Vy + Vy) (%)
! [j ! Quantities in Table I1I:
LA zZ Vx = W' (IV.4)
! ! — — ~ ~ AL
X ! o U T ! Y =Vx - VxA@)TWyAb)Vx (IV.5)
el ! _ R
' ! Vxyr = Vx A(0)" Wy Vy (IV.6)
L e e e e e e e e e e e m - = J
. -1
g(x,y, 6) mx = Vx <me){ + A(@)T (VZ + Vy> my)
(IV.7)
Inner product®” X of column vectors® and X, = (In - VXA(é)TWyA(é)>
A(©) =0OT: »
A mx + VxAG)T (Vo +Vy)
Wo = a,2(Vx +mxm%) (1) (mX + VxAW©) ( z+ Y) m")
W(_)% = 0'22(ny + mey) (1n.2) (IV-8)
my = Vy (Wymy + Wyﬁy) (IV.9)

Scalar© times column vectorX, A(©) = ©: _ (I _ ‘—/wa) (my n ‘—/YWY%_W) (V.10)
- m .

1/58 =tr (WzVx) + mEWzmx (n.3)
Mo /T3 =tr (WzVxyr)+mEWzmy  (IL4)

jf(’g)pfg?yi(sg)r’md“@@x of column vectorsd and X, Table II; the analog of (I1.3) and (I1.4) is Table IV, which
_ S gives expressions for the marginal meansg and my and
We =Wz 0 (Vx + me;F() (1.5) for the covariance matricdgy an_g Vxvyr for fixed® = 0 in

terms of the parametersx and Vx andiny and Vy of the

W(_)(TTL(_): Wz o V- +mxm¥ . . .
( z <XYT . Y>> incoming Gaussian sum-product messages. Note that Table IV

(L1t (In-6) applies to all the cases in Table Ill simultaneously.
The proofs of the claims in Table Ill are given in Ap-
Autoregression, see (50) and (54): pendix C and the proofs of the claims in Table IV are
We = o> (Vx +mxm§> (I11.7) given in appendices D and E. Not surprisingly, some of these
— L derivations are essentially equivalent to similar comportes
Weine = a7~ (Vxv, +mxmy,) (1-8) in the EM literature [33]-[35]. Nevertheless, most of the

statements in Tables Il and IV do not seem to be readily
available in the prior literature.
We conclude this section by considering the specialization

General matrix® times column vectotX, A(©) = ©:
e(?) is Gaussian invect(9)T with

We = Wz ® (Vx +mxmZ%) (1n.9) of Case 1 (inner product) t§ = y fixed, which results in the
Weine = (Wz @ I,) cvect(Vyyr +mxm%)  (lll.10) situation of Table IlI. In this case, we have
my = (my =Yy (58)
and
and the analogous column stack vectorect(B), where Vxy = Vy = VY = 0. (59)
the columns ofB are stacked into one column vector. For ) o
example, if With the translationsms = my and 0% = o%, it is
bii bio obvious that (I1l.1) and (l11.2) specialize to (II.1) and.d),
B= boa1 bao (57) respectively. Moreover, withd(6)T = 6, it is obvious that

11.3) foll f V.1 d (11.4) foll f IV.7).
then rvect(B) = (b1,1,b1,2,b2,1,b22) and cvect(B) = (11.3) follows from (IV.1) and (11.4) follows from (IV.7)

(blﬂl,b271,b172,b2_’2)T. With this notation, the EM message is
Gaussian inrvect(©)” with parameters (111.9) and (l11.10)
(see also (132)). We have showed that EM may be viewed and used as

Note that Table Il gives the analog of (I1.1) and (Il.2) ina message passing algorithm in factor graphs, and we have

VI. CONCLUSIONS



identified a general “local” EM message computation rule (Ta O
ble I). In some important cases, the EM messages are tractabl
expressions, which was exemplified by the EM message %Jﬁ
of multipliers (arising from unknown coefficients) in linea
Gaussian models.
As a full member of the family of message passing algo- . . R | f(x,0)
rithms, it is easy to seamlessly combine expectation maxi- f(0,0) < f(0) + / f(z,0) m —1)dx (63)
mization with other message passing algorithms in intergst ’ ’
ways. In particular: - f(é)Jr/f(I,@) da:—/f(a:,é) dx (64)
« EM messages (like all messages) may be represented “ v
in many diff i i i i i = f(0). (65)
y different ways (including Gaussians as in Sec
tions IV and V, Gaussian mixtures [28], particles [32] u
etc., leading to quite different actual computations.
» The freedom (or the necessity) to choose some definite 6*+1) = argmax f(6,0%). (66)
message update schedule leads to different algorithms 9
with different performance; more about this will be saig\e then obtain

Proof: The equality (62) is obvious. The inequality (61)
ows from eliminating the logarithm in (60) by the inedua
ity log(z) <z —1 for z > 0:

To prove (6), we first note that (5) is equivalent to

in [28]. A I

« The maximization step amounts to applying the max- F(OW)) = Ji(@A(k)ﬁ(k)) (67)
product algorithm to the corresponding subgraph, which < f(OFFD 9y (68)
in turn may be carried out by many (exact or approxiate) < f(é(kﬂ)) (69)

message passing algorithms. For example, in some impor-
tant applications (as, e.g., in Section 1V), the maximizavhere (67) follows from (62), (68) follows from (66), and (69
tion step can be done by Kalman filtering / smoothing. follows from (61).
o The expectation step relies on plain sum-product mes-
sages. However, depending on the involved nodes and APPENDIXB
message types, the sum-product algorithm may be real-  Some PROPERTIES OF THETRACE OPERATOR

::zfe([jS(e;(:gttilélno\r/apprommately) in many different ways, We recall some pertinent properties of the trace operator
n ' for use in Appendix C-B. The entries of a matrik will be
Moreover, it is a general observation that tabulated megenoted byuy. .. The trace of a square matrik is the sum of
sage computation rules can greatly simplify the derivatibn the diagonal elements of:
message passing algorithms [5]. This applies, in partictda R
EM messages, which we have tabulated for various multiplier tr(A) =) apx. (70)
nodes (scalar, vector, general matrix, ...) with incoming k
Gaussian messages. With these message tables, EM algoritAgr matrices4 and B such thatAB is a square matrix (i.e.,
for a number of basic linear-system identification problemB has the same dimensions 4%), we have
can easily be composed without additional derivations or
computations. More such tables will be given in [28]. tr(AB) = Z Z%éb&k (71)
kool

= tr(BA). (72)
APPENDIXA

PROOF OFEQUATION (6) In particular, ifx andy are column vectors (with the same

number of rows), we have
We give a variation of a standard proof (cf. [9]) that is

T T T
adapted to the setup of Section Il. The heart of the proof is wy=y w=tr(ey). (73)
the following fact. Moreover, foriW = AT A, we have
Lemma: The function T Wy = (Ax)T Ay (74)
o A ) = tr(Aa(4y)") (75)
6,0) 2 f(0 / Dog( L@ 60
f0.0)2 500+ [ 1.0) og( o) ~ tr(AayTAT), (76)

(where 1og” denotes the natural logarithm) satisfies both and using (72) we further obtain

L T Wy = tr(Way” (77)
f(6,0) < f(0) (61) ( T )
= tr(zy” W). (78)
and ~ Now let X andY be random column vectors with the same
f(0,6) = 1(0). (62) dimensions. Letnx = E[X] andmy = E[Y] and

Vyyr ZE[(X —mx)(Y —my)T]. (79)
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Then, for any square matri¥/ as above (i.e.JV = ATA) becomes

with suitable dimensions, we have 1
n) = —3 (E[(@TX)TW (07 x)] — 2E[(9TX)TWZYD
E[XTWY] + const (90)
=E[(X —mx)"W(Y —my)] + mkWmy  (80) - %( (07X W5 XT6) - 2E[07 XW5Y])
=E[tr(W(X —mx)(Y —my)")] + mkWmy (81) 1 const (1)
— T
= tr (WVxyr) +mxWmy. (82) . —% (7B [XWZXT] 0 — 207X W,V ))
+ const. (92)
APPENDIXC It is then obvious from (84) that the EM messagé? is
PROOFS OF THECLAIMS IN TABLE |lI Gaussian (up to a scale factor) with weight matrix
Recall (for repeated use below) that the probability dgnsit We = E[XX"]|0,? (93)
function of ann-dimensional real Gaussian random vector Vx +mxm% 04)
= 72
0z
flz) = d(ezt (?,f) e~ 3(@—m)TW(z—m) (83) and
™ — . Ly
o< e*%(ITWm72zTWm) (84) W@’ITI@ = E[XY] 0z (95)
> _ Vxy + mxmy (96)
wherem is the mean vector and’ = VV~! (a positive definite 7z

matrix) is the inverse of the covariance math Inthe scalar g scalar® Times Column Vectok
case f = 1), we will also use the notatioa? = V.

Now consider the factor graph in Table Ill. The closed-box
function g(z, y, ) is obtained by marginalization/integration n(0) = const— E(GQE[XTWZX} _99F [XTWZYD- (97)
over the variables inside the dashed box: 2

In this case, we have(f) = 6, a scalar, and (89) becomes

It follows from (84) thate”(?) is Gaussian with

— / S(u— A(0)x M e—%(y—U)TWZ(y—U) du (85) =tr(WzVx) + mﬁWZmX (99)
() and
w o= H U= A@)) W (y—A(6)a) (86) Mo/ 72 = B[XTW,Y] (100)
(2m) — tr (W Vyyr) +mEWamy (101)
The exponent (I.1) of the EM messagé?) is Where((99)) and (101) follow from (82) and withy-+ defined
as in (155).
0) = E[logg(X,Y,6 87
" 1[ gg(det(WZ))] (87) C. Componentwise Produél ® X of Column Vectors
=3 log< 2m)" ) In this case, we havel(d) = diag(0), a diagonal matrix

1 with the elements off on the diagonal, and (89) becomes
— -E[Y —A0)X)"Wz(Y — A(0)X)] (88) 1
2 X n(#) = const— = (E[(diag(@) )" Wz (diag(6)X)]
— const— - (E[(A(O)X)TWZ(A(H)X)] 2
2 — 2E[(diag(0) Twzy]) (102)
- 2E[(A(9)X)TWZY]), (89) )
= const— 3 (E[(diag(X)@) Wz (diag(X)0)]
where all logarithms are natural, where the expectatiowés o

T
X and Y (with respect to the local probability (137)), and — 2E[(diag(X)0)" W Y]) (103)

where “const” subsumes a.II terms thajt dg -not depend.on — const— l(HTE[diag(X)WZ diag(X)] 0
We are now ready to discuss the individual cases of Ta-
ble 111, - 29TE[diag(X)WZY]). (104)
It follows from (84) thate”(?) is Gaussian with
A. Inner Product®” X of Column Vector® and X W@ = E[diag(X )Wz diag(X)] (105)
In this case, we havel() = #7. The quantitie®)” X, Y, =Wz OB[XX"] (106)

andW are scalars; in particulaf¢” X )T = 7 X. Thus (89) =Wz o (Vx + mxmk) (107)



and

Wo e = E[diag(X)WzY] (108)
—E [diag(X)WZ diag(Y) (1,1,..., 1)T} (109)
= (Wz0E[XxYT])(1,1,...,1)" (110)

= (Wz 0 (Vxyr +mxm¥)) (1,1,...,1)" (111)

D. Autoregression (Companion Matrix)

In this case, recall from (50) that

w0 (,7)

wheren is the dimension of the column vecty and where
I,—1 is the(n — 1) x (n — 1) identity matrix.

9T

L (112)

Before we proceed, we need to address the following issue.

According to (54), we have

o 0 0 0
0 ¢ 0 0
vi=| o o . (113)

with ¢ = 0, which creates a problem witiW’; = Vz_l. We

address this problem by proceeding with (113) witly 0. As

it turns out, the resulting expression fgf¢) does not depend

on ¢ (except in an additive constant, which we ignore).
Using (112), (89) becomes

0T X 0T X
1 X Xy
n(#) = const— 3 E : Wz :

Xn—l Xn—l

oTx \"
Xy
- 2E . WzY | |. (114)

anl

Using (113) and ignoring all constant terms yields

n(#) = const
- %(E [0 X057 X] = 2B[07 Xo72vi] ) (115)

— const
- %(HTJEQE[XXT] 0 — 2070 *BIX V1) ) (116)

It follows from (84) thate”(?) is Gaussian with

Wo = 0,2 B[XX] (117)
=0, (Vx + mxmk) (118)
and
Wo'ne = 0> E[XYi] (119)
=0, (Vxy, + mxmy,) . (120)

11

E. General Matrix® Times Column VectoX

We need to begin with some preparations. Recall the row
stack operatorvect (56) and the corresponding column stack
operatorscvect. Let A be anm x n matrix with rows
ai,...,an,. For any column vector € R” and anym x m
square matri¥y (with elementswy, (), we have

ai1x
(Ax)"W Az = (a1, . .., amx) W (121)
amx
= Z Z aprwy,e(aer) (122)
k=1¢=1
= Z Z ApWE ¢TI Ay (123)
k=1¢=1
(ala 9 am)
w1,1fL‘$T wme.”L'T a{
: . | a2
Wz T——— al
= rvect(A) (W @ za”) rvect(4)”. (125)
Moreover, for any column vectay € R™, we have
Y1
(Ax)TWy = (a1, ..., amx) W (126)
Ym
= Z Z ApTWE 2Yr (127)
k=1¢=1
=33 arwr ey (128)
k=1¢=1
= (al,---,am)
wi11y W1, mIn Yy
: : (129)
wm,lln wm,mIn TYm
= rvect(A) (W @ I,) cvect(zy”). (130)

After these preparations, we return to the EM message for
the case wherel(f) = O is a generain x n matrix. In this
case, (89) becomes

() = const- - (E[(@X)TWZ(GX)] —9E [(@X)Twzy])
? (131)
and using (125) and (130) we obtain

n(©) = const— %(rvect(@) E[W; ® XX"] rvect(©)”
— 2rvect(©)E[(Wz ® I,,) cvect(XYT)]). (132)

We now see that"(®) is Gaussian invect(©)7 with

Wo =Wz @ E[XX] (133)
=Wz @ (Vx +mxmk) (134)
and
Wome = (Wy ® I,) cvect(B[XY7]) (135)
= (Wz ® I,) evect(Vyyr + mxmi). (136)
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APPENDIXD
PROOFS OF THECLAIMS IN TABLE IV EXCEPT(IV.6) Fig. 7. Factor graph for Appendix E.
We consider the computation of the mean vecterg and
my and the covariance matriky with respect to the local
probability density (1.3) Equation (1V.9) is immediate from
plocal(xa y|é) X g(x, Y, é)ﬁX (:T)(ﬁy(y) (137) Wymy = Wymy + Wymy. (151)

with g(x y,6) as in Table Il (see also (86)) and whefex Finally, Equation (IV.10), is obtained using [5, (eq. 1:4)]
and 77y are the mcomLQ Gaussmn sum- product messages

W|th parameterSnX and Vx (or WX =V 1) andmy and my = Vy Wymy (152)

VY (OI’ WY - VY ) respectlvely = (7}/ — ‘_/yWyvy) (Wymy + Wy(ﬁy) (153)
Throughout this sectior® = 6 is fixed and we will simply . o

write A instead ofA(d). The factor graph of Table IIl then = (Im - VyWy) (m’y + VyWy‘my) . (154)

reduces to the factor graph of Fig. 6. The desired quantities

may be obtained by Gaussian sum-product message passing APPENDIX E

in this factor graph. In the following computations, we will PROOF OF(IV.6)

frequently use Tables 2 and 3 of [5] without special notice;

the reader is advised to have these tables at hand. We need to compute the covariance matrix

Equation (1V.1) follows from Viyr 2 E[(X —mx)(Y —my)T] (155)
— —
Wx = V_[CX + WX(_ (138) \ith respect to the local probability density (137). Corsid
=Wx +ATWyA (139) the factor graph shown in Fig. 7 with block matrices
— — \—1
=Wy + AT (Vs + vy) A (140) v ( A > (156)
Equation (IV.2) is immediate from ;”
Vy =Vy+Vy (141) B= ( 0 ) , (157)
—
Equation (IV.3) is the definition of¥’ as in [5, eq. (56)]. . .
; heren and m are the dimensions of the column vectors
Equation (IV.5) follows from [5, (1.4) and (111.8)]: w . . : .
quation (IV.5) o_c:ws Em! L ) and (111.8)] X andY, respectively. This factor graph is obtained from
Vx =Vx = VxWxVx (143) the factor graph in Table Il by stretching the variabie
= T/X - I—/XATWyAX_/X. (144) accross the adder node so that the variabfesnd Y’ now

appear jointly as components of the vectdr’, X7)” on the

Equation (IV.7) follows from correspondingly labeled edge. The closed-box funajiany)

Wxmyx = V_[}Xm’x + WX‘mX (145) in Fig. 7 equals the closed-box functigtiz, y, §) in the factor
_ V—[}me 4 ATWU%U (146) graph in Table IlIlI.

s e\l The desired matriX/yyr is the lower left corner of the
= Wxmix + A" (Vz + VY) my.  (147) covariance matrix

Using (144) and (147), Equation (IV.8) follows from Vi — W Vxry (159)

mx = VxWxmx (148) <§) Viyr - Vx 7
_ (VX _ VXATWYA‘_/){) which can be computed by Gaussian sum-product message
passing in Fig. 7. As in Appendix D, we will use Tables 2

) (WXmX 4+ AT (Vz i Vy) %Y) (149) and 3 of [5] without special notice. We have
— —
. Vi = A Vx (AT 160
_ (In—vXATWyA) (%) x(A") ( )
_ PR AV AT AVy
- (mx + VAT (VZ + Vy) my) . (150) = ( Vedl T (161)



and [5]
Viyy = Vouy + BV BT 162
()= V() TPV 182
— T —
X X [7]
We also have
") :Wf(y)+ﬁf(y) (164) [
o e [9]
=V L +cTvyc (165)

(%)

0
and the Matrix Inversion Lemma (see, e.g., [5, eq. (181)[]])]
yields

_ _ T

o=V e 12
— — -1,

<Vy + Ov()y()cT) cvm (166) 113

_ — o — . CT
(X) (i) — -1 - [14]

-(Vy +AVXAT+VZ) CV(yy (167)
= AVXAT 4V,

== V Y - —

(X) VAT el

(Vv + AV AT + VZ)_1 [16]

(168)

. (A‘_/)XAT + Vz, Avx) [17]

The lower left corner of this matrix is

— — — — -1
Vxyr = VxAT — VxAT (VY + AVXAT + Vz) [18]
o AT
: (A Vi AT 4 VZ) (169) g
— — — -1
= VxAT (Vy + AVXAT + Vz)
. ( (VY + AVXAT + Vz)
- (AT/’XAT + VZ)) 7o) 4
— — — \— 1l
— VyAT (AVXAT Y Vg4 Vy) Vy  (171) [22]
and using [23]
~ — — \
Wy = (AVXAT YV + Vy) (172) [24]

from (1V.3) and (1V.2) yields (IV.6). (25]
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