
ar
X

iv
:0

91
0.

28
32

v1
  [

cs
.IT

]  
15

 O
ct

 2
00

9
1

Expectation Maximization
as Message Passing—Part I:
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Justin Dauwels, Andrew Eckford, Sascha Korl, and Hans-Andrea Loeliger

Abstract—It is shown how expectation maximization (EM) may
be viewed as a message passing algorithm in factor graphs. In
particular, a general EM message computation rule is identified.
As a factor graph tool, EM may be used to break cycles in
a factor graph, and tractable messages may in some cases be
obtained where the sum-product messages are unwieldy.

As an exemplary application, the paper considers linear Gaus-
sian state space models. Unknown coefficients in such modelsgive
rise to multipliers in the corresponding factor graph. A main
attraction of EM in such cases is that it results in purely Gaussian
message passing algorithms. These Gaussian EM messages are
tabulated for several (scalar, vector, matrix) multipliers that
frequently appear in applications.

Index Terms—Expectation maximization, factor graphs, mes-
sage passing.

I. I NTRODUCTION

Graphical models [1] in general and factor graphs [2]–[5]
in particular provide a notation for structured system models
that helps to describe and to develop algorithms for detection
and estimation problems. A large variety of algorithms can be
viewed as message passing algorithms that operate by passing
locally computed “messages” along the edges of the factor
graph.

Expectation maximization (EM) [6]–[9] is an iterative tech-
nique for parameter estimation which is widely used in statis-
tics and signal processing. EM is a standard tool for parameter
estimation in graphical models [10], [11], but EM has not
traditionally been viewed as a message passing algorithm.
Examples in communications include turbo synchronization
[12]–[14], joint channel estimation and symbol detection [15]–
[17], and distributed source coding [18].

An explicit formulation of a “factor graph EM algorithm”
was proposed in [19] and [20], and a full description of EM
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as a message passing algorithm with a general local message
computation rule was presented in [21], which is the basis of
the present paper. A similar approach was also pursued by
O’Sullivan [22] and by Herzet et al. [14].

In a parallel development, Winn and Bishop made the
important observation that variational inference can be put into
message passing form [23], [24], and similar observations were
made also in [25] and [26]. In fact, EM message passing may
be viewed as a special case of variational message passing
[27]. However, EM is not specifically addressed (and not even
mentioned) in [23]–[25].

In this paper and its companion paper [28], we develop
the EM algorithm as a general message passing technique
for factor graphs. This formulation may be helpful in several
different ways:

• EM may be used to estimate unknown parameters in a
factor graph model.

• EM may be used to break cycles in a factor graph.
• The EM messages are tractable expressions in some

cases where the sum-product and max-product message
computation rules yields intractable expressions.

• Tabulated EM messages for frequently occuring
nodes / factors allow the composition of nontrivial
EM algorithms without additional computations or
derivations.

Conversely, the flexibility of the factor graph approach sug-
gests many variations and extensions of the EM algorithm
itself, as will be discussed in Section VI and in [28]. More-
over, the EM message passing algorithm may be seamlessly
combined with sum-product and max-product message passing
in various ways.

This paper begins with a brief review of standard EM in
Section II and a detailed development of message passing
EM in Section III. As quite some time has passed since the
publication of [19]–[21], this part of the paper is perhaps
mainly tutorial.

In Section IV, we illustrate message passing EM by its
application to linear Gaussian models (in particular, FIR filters
and autoregressive filters) with unknown coefficients. In these
examples, the EM messages turn out to be Gaussian, which
yields a fully Gaussian algorithm for these nonlinear problems.

These examples also illustrate the use of tabulated EM
message computation rules. The derivation of the EM message
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for a particular application is often not trivial and tables
of precomputed EM messages can therefore be helpful. In
Section V, we present tables of EM messages out of various
“multipliers” that arise naturally in linear Gaussian models
with unknown coefficients.

The proofs of these tabulated message computation rules
are given in Appendices C–E. Appendices D and E rely on
Gaussian sum-product messages tabulated in [5], which further
illustrates the use of tabulated message computation rules.

Some concluding remarks are offered in Section VI.
The companion paper [28] begins with discrete variables

and makes a tour through EM algorithms ranging from hidden
Markov models to independent factor analysis.

In this paper, we will use Forney-style factor graphs (also
called normal factor graphs) as in [4] and [5], a variation
due to Forney [29] of factor graphs as in [3]. The reader
is specifically referred to [5] for details of the factor graph
notation. In particular, we will use arrows (as in−→µ and←−µ )
for sum-product messages, and we will use capital letters for
unknown variables (i.e., functions of the configuration space)
and lower-case letters for particular values of a variable.

From Section IV onward, multivariate Gaussian distribu-
tions will be prominent. Such distributions will be parameter-
ized either by a mean vectorm and a covariance matrixV or
by the inverse covariance matrix (“weight matrix”)W = V −1

and the transformed mean vectorWm. For Gaussian mes-
sages, these parameters will be denoted by−→m,

−→
V , etc., as

in [5]. We will sometimes allow messages to be degenerate
(non-integrable) “Gaussians”e−

1

2
(xT Wx−2xT Wm) where the

weight matrixW is positive semi-definite and singular rather
than positive definite.

II. REVIEW OF THE EM ALGORITHM

We begin by reviewing the EM algorithm in a setting which
is suitable for the purpose of this paper. Suppose we wish to
find

θ̂max
△

= argmax
θ

f(θ) (1)

for some functionf : R
n → R. We assume thatf(θ) is the

“marginal” of some real-valued functionf(x, θ), i.e.,

f(θ) =

∫

x

f(x, θ) dx (2)

where
∫

x g(x) dx denotes integration ofg(x) over the whole
range of x. (The integral in (2) may be replaced by a
sum if x is discrete, with obvious corresponding changes in
subsequent expressions.) The functionf(x, θ) is assumed to
be nonnegative:

f(x, θ) ≥ 0 for all x and allθ. (3)

In addition, we assume0 < f(θ) < ∞ for all θ. In
other words, for any fixedθ, f(x, θ)/f(θ) is a probabil-
ity density overx. We will also assume that the integral
∫

x
f(x, θ) log f(x, θ′) dx exists for allθ, θ′.
The EM algorithm attempts to compute (1) as follows:

1) Make some initial guesŝθ(0).

fA

Θ
?̂θ

(k)

6eη(θ)

fB

X

Fig. 1. Factor graph of (7) with EM messageeη(θ).

2) Expectation step: evaluate

f (k)(θ)
△

=

∫

x

f(x, θ̂(k)) log f(x, θ) dx. (4)

(The base of the logarithm is immaterial.)
3) Maximization step: compute

θ̂(k+1) △

= argmax
θ

f (k)(θ). (5)

4) Repeat 2–3 until convergence or until the available time
is over.

The main property of the EM algorithm is

f(θ̂(k+1)) ≥ f(θ̂(k)). (6)

For the reader’s convenience, a concise proof of (6) is given
in Appendix A. In many applications, the expressions (4) and
(5) turn out to be quite manageable and simpler than the direct
maximization (1).

In typical applications,f(x, θ) is extended tof(x, y, θ),
wherey is known and fixed. The functionf(x, y, θ) is either a
probability density overx andy with parameterθ or it is a joint
probability density overx, y, andθ. In the EM literature,y is
called the observed data,x is called the missing (unobserved)
data, and the pair(x, y) is called the complete data.

III. EM AS A MESSAGEPASSING ALGORITHM

We now consider EM in factor graphs. We will do this in
several steps. The resulting message passing algorithm will be
summarized in Section III-E.

We henceforth assume that all logarithms are natural loga-
rithms.

A. Trivial Factor Graph

We first consider a trivial factorization

f(x, θ) = fA(θ)fB(x, θ), (7)

the factor graph of which is shown in Fig. 1. (In typical
applications,fA(θ) is either a prior probability or constant.) In
this setup, the EM algorithm amounts to iterative computation
of a downward messagêθ(k) and an upward messageeη(θ) as
follows.

Upward message (EM message):eη(θ) with

η(θ)
△

=

∫

x
fB(x, θ̂(k)) log fB(x, θ) dx
∫

x
fB(x, θ̂(k)) dx

(8)

= EpB
[log fB(X, θ)] , (9)
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whereEpB
denotes the expectation with respect to the proba-

bility distribution

pB(x| θ̂(k))
△

=
fB(x, θ̂(k))

∫

x′ fB(x′, θ̂(k)) dx′

(10)

Downward message:

θ̂(k+1) = argmax
θ

(

fA(θ) · eη(θ)
)

(11)

= argmax
θ

(log fA(θ) + η(θ)) . (12)

The equivalence of this message passing algorithm with (4)
and (5) may be seen as follows. From (4) and (5), we have

θ̂(k+1)

= argmax
θ

∫

x

f(x, θ̂(k)) log f(x, θ) dx (13)

= argmax
θ

∫

x

fA(θ̂(k))fB(x, θ̂(k))

· log
(

fA(θ)fB(x, θ)
)

dx (14)

= argmax
θ

∫

x

fB(x, θ̂(k))

·
(

log fA(θ) + log fB(x, θ)
)

dx (15)

= argmax
θ

(

log fA(θ)

+

∫

x
fB(x, θ̂(k)) log fB(x, θ) dx
∫

x′ fB(x′, θ̂(k)) dx′

)

(16)

which is equivalent to (8) and (12).
Some remarks:

1) The quantityη(θ) may be viewed as a “log-domain”
summary of fB. The corresponding “probability do-
main” summaryeη(θ) is consistent with the semantics
of factor graphs where messages are “summaries” of
factors (cf. (11) and (22)). We will refer toeη(θ) as the
EM message.

2) A constant may be added toη(θ) without affecting (12).
3) If fA(θ) is constant, the normalization in (8) can be

omitted. More generally, the normalization in (8) can be
omitted iffA(θ) is constant for allθ such thatfA(θ) 6= 0
(i.e., if fA(θ) expresses a constraint); this case occurs
in many applications.

4) Nothing changes if we introduce a known observation
(i.e., a constant argument)y into f such that (7) becomes
f(x, y, θ) = fA(y, θ)fB(x, y, θ).

B. Nontrivial Factor Graph

We now come to the heart of the matter: ifθ is a vector,θ =
(θ1, θ2, . . .), and if fB has a nontrivial factor graph, then the
EM messageeη(θ) splits into messageseη1(θ1), eη2(θ2), . . . that
can be computed “locally” in the factor graph offB.

To see this, consider the following example (which actually
covers the general case). Letθ = (θ1, θ2), let x = (x1, x2, x3),
and let

fB(x, θ) = fC(x1, x2, θ1)fD(x2, x3, θ2), (17)

fA

Θ1

?̂θ
(k)
1

6eη1(θ1)
Θ2

?̂θ
(k)
2

6eη2(θ2)

X1

fC

X2
fD

X3

fB

Fig. 2. Factor graph of (17), a refinement of Fig. 1.

the factor graph of which is shown in Fig. 2. In this case, (9)
splits into

η(θ1, θ2) = EpB

[

log
(

fC(X1, X2, θ1)fD(X2, X3, θ2)
)]

(18)

= η1(θ1) + η2(θ2) (19)

with
η1(θ1)

△

= EpB
[log fC(X1, X2, θ1)] (20)

and
η2(θ2)

△

= EpB
[log fD(X2, X3, θ2)] . (21)

The EM messageeη(θ) thus factors as

eη(θ1,θ2) = eη1(θ1)eη2(θ2), (22)

and the factorseη1(θ1) andeη2(θ2) may be viewed as upward
messages along the edgeΘ1 andΘ2, respectively, in the factor
graph of Fig. 2. The downward messages in Fig. 2 are the
estimates

(θ̂
(k+1)
1 , θ̂

(k+1)
2 ) = argmax

(θ1, θ2)

fA(θ1, θ2)e
η1(θ1)eη2(θ2) (23)

as is obvious from (11) and (22).
The expectation in (20) may be computed with respect to

the probability distribution

pB(x1, x2| θ̂(k))
△

=

∫

x3

pB(x1, x2, x3| θ̂(k)) dx3, (24)

which is the marginal ofpB with respect to the arguments
of fC, and the expectation in (21) may be computed with
respect to the probability distribution

pB(x2, x3| θ̂(k))
△

=

∫

x1

pB(x1, x2, x3| θ̂(k)) dx1, (25)

which is the marginal ofpB with respect to the arguments
of fD.

Going through this derivation, we note that the generaliza-
tion to an arbitrary factor graph forfB is immediate. Note,
in particular, that the splitting of the expectation in (19)
does not assume that the factor graph offB is cycle-free. If
g(x1, . . . , xm, θg) is a generic node / factor in the factor graph
of fB, we obtainηg(θg) as in (I.1) and (I.2) in Table I with

plocal(x1, . . . , xm| θ̂) △

=

∫

x:x1...xmfixed
pB(x| θ̂) dx (26)

∝
∫

x:x1...xmfixed
fB(x, θ̂) dx, (27)
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TABLE I
EM MESSAGEeηg(θg) OUT OF A GENERIC NODE/ FACTORg.

Θg

?θ̂g

6eηg(θg)

g

X1 6−→µX1

· · ·

Xm 6−→µXm

ηg(θg) = Eplocal

ˆ

log g(X1, . . . , Xm, θg)
˜

(I.1)

=

Z

x1,...,xm

plocal(x1, . . . , xm| θ̂)

· log g(x1, . . . , xm, θg) dx1 · · · dxm (I.2)

with

plocal(x1, . . . , xm| θ̂)

∝ g(x1, . . . , xm, θ̂g)−→µX1
(x1) · · · −→µXm

(xm) (I.3)

where−→µXℓ
denotes the incoming sum-product message along

the variable / edgeXℓ computed forΘ = θ̂.

A constant scale factorγ in g results in a scale factorγ in
eηg(θg) which can be ignored.

where “∝” denotes equality up to a scale factor. Note that
the missing scale factor in (27) can be locally recovered by
integrating (27) overx1 . . . xm. It remains to make the step
from (27) to (I.3) in Table I.

C. Using Sum-Product Message Passing for the Local Expec-
tations

If the factor graph offB(x, θ̂) is cycle-free (after removing
the edges forΘ = θ̂), then the marginals (27) can be
computed by sum-product message passing (see [4], [5]) in
this factor graph. As above, letg(x1, . . . , xm, θg) be a generic
node / factor in the factor graph offB. Then (27) may be
computed as in (I.3) in Table I, where−→µXℓ

denotes the
incoming sum-product message along the variable / edgeXℓ

computed forΘ = θ̂.
For example, we can write (24) as

pB(x1, x2| θ̂) ∝
∫

x3

fC(x1, x2, θ̂1)fD(x2, x3, θ̂2) dx3 (28)

= fC(x1, x2, θ̂1)
←−µX2

(x2) (29)

where←−µX2
is the right-to-left sum-product message along

the edgeX2 computed forΘ = θ̂. (A constant message−→µX1
(x1) = 1 may be added as a factor in (29).)

D. Using Max-Product Message Passing for the Maximization

If fA can be factored into a cycle-free factor graph, then the
maximization (23) (and its obvious generalization to general
factor graphs) can be carried out by max-product message

fA

fB
f0

-
X0

f1

Θ1
?̂θ1

6eη1(θ1)

y1

-
X1

f2

?̂θ2

6eη2(θ2)

y2

X2

. . .

. . .
-

Xn−1

fn

Θn
?̂θn

6eηn(θn)

yn

-
Xn

Fig. 3. Application of EM to general state space model.

passing in the factor graph offA. This applies, in particu-
lar, to the standard case wherefA(θ1, θ2, . . .) expresses the
equality constraintΘ1 = Θ1 = . . ., which we will encounter
in Section IV.

E. Putting it Together

Let us summarize the findings of this section by considering
the factor graph of Fig. 3, which is an easy generalization
of Fig. 2. Note that removing the edgesΘ1, . . . , Θn cuts
the factor graph (Fig. 3) into two cycle-free components. Let
θ

△

= (θ1, . . . , θn), x
△

= (x1, . . . , xn), and y
△

= (y1, . . . , yn).
Suppose that we wish to find

θ̂ = argmax
θ

fA(θ)

∫

x

fB(x, y, θ) dx (30)

for fixed knowny. In this case, the EM algorithm applies as
follows:

1) Make some initial guesŝθ = (θ̂1, . . . , θ̂n).
2) Perform forward-backward sum-product message pass-

ing through the factor graph offB (with θ̂ℓ plugged into
fℓ for ℓ = 1, . . . , n).

3) Compute the EM messageseη1(θ1), . . . , eηn(θn) as in
Table I. In this case, we obtain

ηℓ(θℓ) = Eplocal

[

log fℓ(Xℓ−1, Xℓ, yℓ, θℓ)
]

(31)

where the expectation is with respect to the probability
density

plocal(xℓ−1, xℓ|yℓ, θ̂) ∝ fℓ(xℓ−1, xℓ, yℓ, θ̂ℓ)

·−→µXℓ−1
(xℓ−1)

←−µXℓ
(xℓ) (32)

where−→µXℓ−1
and←−µXℓ

denote sum-product messages.
4) Compute new estimates

θ̂ = (θ̂1, . . . , θ̂n) (33)

= argmax
(θ1,...,θn)

fA(θ1, . . . , θn) eη1(θ1) · · · eηn(θn). (34)

If fA has a cycle-free factor graph, this maximization
may be carried out by max-product message passing in
that factor graph.

5) Repeat 2–4 until convergence or until the available time
is over.

All this applies to general factorizations offA and fB

provided that the resulting factor graphs (without the edges
Θ1,. . . ,Θn) are cycle-free.



5

If the factor graphs offA andfB are not cycle-free, the same
local computation rules can be used nonetheless and seem to
work well in some applications, cf. [12]–[18].

In many cases, the computation of an EM message ac-
cording to Table I requires substantial additional work. Pre-
computed tables of such messages for frequently occuring
nodes / factors can therefore be useful, as will be demonstrated
in Sections IV and V.

F. An Issue: Hard Constraints and Grouping

Nodes in factor graphs often express “hard” constraints [4],
[5]. For example, the constraintX1 = X2 (for real variables
X1 andX2) may be expressed by the node / factorδ(x1 − x2),
where δ denotes the Dirac delta. It turns out that the EM
message computation rule of Table I should not be applied
to such constraint nodes; the typical outcome of the attempt
will be a degenerate EM messageeηs(θs) that expresses the
constraintΘs = θ̂s, which stalls the EM algorithm.

For example, assume thatX1, X2, Θ are real variables and
the node / factor

g(x1, x2, θ) = δ(x1 − x2θ) (35)

expresses the constraintX1 = X2Θ. Then

η(θ) ∝
∫

x1

∫

x2

g(x1, x2, θ̂)
−→µX1

(x1)
−→µX2

(x2)

· log g(x1, x2, θ) dx1dx2 (36)

=

∫

x2

−→µX1
(x2θ̂)

−→µX2
(x2) log g(x2θ̂, x2, θ) dx2 (37)

=

∫

x2

−→µX1
(x2θ̂)

−→µX2
(x2) log δ(x2(θ̂ − θ)) dx2, (38)

which is obviously pathological and illustrates the issue.
It is usually easy to avoid this problem by grouping con-

straint nodes with adjacent “soft” factors / nodes, as will be
illustrated in Sections IV and V.

IV. EXAMPLES: IDENTIFICATION OF L INEAR SYSTEMS

The following two examples arise in many applications. The
use of EM to problems of this kind is not new, but neither
is it trivial [33]–[35]. In communications, the example of
Section IV-A may arise in channel estimation and the example
of Section IV-B may arise in estimating the parameters of non-
white Gaussian noise.

A. FIR Filter Identification with Unknown Input Signal

Let Xk ∈ R
n, k = 0, 1, 2, . . . , N , be the time-k state of a

finite impulse response (FIR) filter with random input signal
Uk ∈ R, k = 1, 2, . . . , N . Specifically,

Xk = AXk−1 + bUk (39)

with n× n matrix

A =

(

0 0
In−1 0

)

(40)

(whereIn−1 is the(n−1)× (n−1) identity matrix) and with

b = (1, 0, . . . , 0)
T

. (41)

. . .

. . .

-
Xk−1 =

?

- A -

N (0, σ2
U )

?

Uk

b

?

+ - =

?

-
Xk

. . .

. . .

gk−1

-×

?

+

N (0, σ2
Z)

�

Zk−1

?yk−1

Θk−1

?

6θ̂k−1

=

gk

-×

?

+

N (0, σ2
Z)

�

Zk

?yk

Θk

?eηk(θk)

6θ̂k

=

Fig. 4. Linear state space model with unknown coefficient vector Θ = Θ1 =
Θ2 = . . . and white Gaussian input signalU1, U2, . . . The figure shows one
section of the factor graph. The multiplier node denotes theinner product
ΘT

k
Xk. The labelN (m, σ2) denotes a scalar Gaussian factor with meanm

and varianceσ2. The EM message computation rule is applied to the dashed
boxes.

We assume that the input signalU1, U2, . . . is zero-mean white
Gaussian noise with varianceσ2

U . We observe a noisy scalar
output signal

Yk = ΘT Xk + Zk (42)

whereΘ is an unknown real column vector and whereZk is
zero-mean white Gaussian noise with varianceσ2

Z . From the
observationsYk = yk, k = 1, 2, . . . , N , we wish to estimate
Θ. Specifically, we wish to compute the maximum-likelihood
estimate

θ̂ = argmax
θ

p(y|θ) (43)

= argmax
θ

∫

u

∫

x

∫

z

p(u, x, y, z|θ) dz dx du, (44)

wherey is defined asy
△

= (y1, . . . , yN) and whereu, x, z are
defined analogously.

The factor graph of this system model, i.e., of

p(u, x, y, z|θ)

= p(x0)

N
∏

k=1

p(yk|xk, zk, θ)p(zk)p(xk |xk−1, uk)p(uk), (45)

is shown in Fig. 4. Note that the unknown coefficient vector
Θ appears in copiesΘk, k = 1, 2, . . . , N (one copy for each
time k) with an equality constraintΘ1 = . . . = ΘN . Note also
that the factorsp(xk |xk−1, uk) and p(yk|xk, zk, θ) express
the constraints (39) and (42), respectively; only the scalar
Gaussian factorsp(uk) and p(zk) are “soft” factors without
Dirac deltas. The factorp(x0) (not shown in Fig. 4) is of
secondary importance and may even be omitted in practice.

Note that the edgesΘk, k = 1, 2, . . . , cut the factor graph
into two cycle-free components. The equality constraintsΘ1 =
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TABLE II
GAUSSIAN MESSAGE PASSING BACKWARDS THROUGH A MULTIPLIER.
X AND Θ ARE REAL COLUMN VECTORS ANDS = ΘT X IS A SCALAR.
N (m, σ2) DENOTES A SCALARGAUSSIAN FACTOR WITH MEAN m AND

VARIANCE σ2 . THE INCOMING SUM-PRODUCT MESSAGE−→µX IS

GAUSSIAN WITH PARAMETERS
−→
WX AND −→mX .

-
X

×
?

?θ̂ 6eη(θ)

-
S

N (mS , σ2
S)

eη(θ) is Gaussian with

←−
WΘ =

VX + mXmT
X

σ2
S

(II.1)

←−
WΘ
←−mΘ =

mXmS

σ2
S

(II.2)

with VX andmX given by

V −1
X

=
−→
WX + θ̂ θ̂T /σ2

S (II.3)

WXmX =
−→
WX
−→mX + θ̂ mS/σ2

S . (II.4)

Θ2 = . . . at the bottom of Fig. 4 correspond tofA in Figures
2 and 3; everything else in Fig. 4 corresponds tofB in Figures
2 and 3.

With estimateŝθk plugged in, the upper part (thefB part)
of Fig. 4 becomes a standard linear Gaussian factor graph,
where sum-product message passing amounts to Kalman fil-
tering / smoothing [5, Section V].

We now need to compute the EM messageseηk(θk). Heeding
the advice of Section III-F, we group the multiplier node
(which is a hard constraint) with the adjacent soft node / factor
p(zk) ∝ e−z2/(2σ2

Z ) as indicated by the dashed boxes in
Fig. 4; this grouping (and integrating / marginalizing overthe
variables inside the box) results in the factor

gk(xk, yk, θk)

=

∫

zk

δ(θT
k xk + zk − yk)

1√
2πσZ

e−z2

k/(2σ2

Z ) dzk (46)

∝ e−(θT
k xk−yk)2/(2σ2

Z), (47)

which is perfectly well-behaved. Note that the missing scale
factor in (47) can be safely ignored, cf. Table I.

As it turns out, the EM messageeηk(θk) out of the dashed
box gk in Fig. 4 is Gaussian with weight matrix (inverse
covariance matrix)

←−
WΘk

and mean vector←−mΘk
as given by

(II.1)-(II.4) in Table II with mS = yk and σ2
S = σ2

Z . The
proof of (II.1)-(II.4) is given in Section V.

It remains only to compute new estimatesθ̂k by max-
product message passing through the chain of equality con-
straints at the bottom of Fig. 4. Since the incoming EM
messageseηk(θk) are Gaussians, max-product message passing
coincides with sum-product message passing with message
computation rules as in Table 2 of [5].

In summary, both the expectation step and the maximization
step of the EM algorithm can be carried out by Gaussian
message passing.

B. Autoregressive Filter Identification

Consider the following state space representation of an
autoregressive model. Let the stateXk ∈ R

n, k = 1, 2, . . . , N
evolve according to

Xk = AXk−1 + bUk (48)

with
b = (1, 0, . . . , 0)T (49)

and withn× n matrix

A(Θ) =

(

ΘT

In−1 0

)

(50)

whereΘ is an unknown column vector of dimensionn. We
assume that the input signalU1, U2, . . . , which is often called
“innovation”, is zero-mean white Gaussian noise with variance
σ2

U . We observe a noisy scalar output signal

Yk = (1, 0, . . . , 0)T Xk + Zk, (51)

where Z1, Z2, . . . is zero-mean white Gaussian noise with
varianceσ2

Z . From the observationYk = yk, k = 1, 2, . . . , N ,
we wish to estimateΘ; specifically, we wish to compute the
maximum likelihood estimate

θ̂ = argmax
θ

p(y|θ) (52)

= argmax
θ

∫

u

∫

x

∫

z

p(u, x, y, z|θ) dz dx du (53)

with y
△

= (y1, y2, . . . , yN ) etc.
The factor graph ofp(u, x, y, z|θ) is shown in Fig. 5. As

in the previous example, the unknown parameter vectorΘ
appears in copiesΘ1 = . . . = ΘN , one copy for each timek.

Again, for fixedΘ = θ̂, this factor graph is linear Gaussian
and cycle-free.

The EM message computation rule of Table I may be
applied to the dashed box in Fig. 5. It turns out that the
EM messageeηk(θk) is Gaussian with mean←−mΘk

and weight
matrix (inverse covariance matrix)

←−
WΘk

given by (III.7) and
(III.8) in Table III.

Again, we have obtained a purely Gaussian message passing
algorithm. Apart from the EM messageeηk(θk), all messages
can be computed as described in [5, Section V].

C. Remarks

We conclude this section with some remarks on these
examples.

1) In order to make the described algorithms work in
practice, it is necessary to pay attention to the scheduling
of the message updates. A serial (left-to-right) sched-
ule may actually work better than alternating forward-
backward sweeps in the two components (corresponding
to fA andfB) of the factor graph, cf. [30].
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. . . . . .

=

?

Θk

?θ̂k 6eηk(θk)

?

A(Θk)

-
Xk−1 × - +

N (0, σ2
U )

?
Uk

b

?
- = -

Xk

?

cT

?

+

N (0, σ2
Z)

-

?yk

Fig. 5. Linear state space model for autoregressive filter with b = c =
(1, 0, . . . , 0)T , with unknown coefficient vectorΘ, and with scalar white
Gaussian innovationU1, U2, . . . The figure shows one section of the factor
graph. The multiplier node denotes the productA(Θ)Xk (50). The EM
message computation rule (III.7) and (III.8) applies to thedashed box.

2) The point of these examples is only to illustrate the
message passing view of the EM algorithm; we are not
concerned here with analyzing and comparing different
approaches to linear-system identification [31].

3) Tabulated message computation rules (as in Table II) can
greatly simplify the derivation of EM message passing
algorithms.

V. GAUSSIAN MESSAGEPASSING

THROUGH MULTIPLIER NODES

A substantial part of traditional signal processing is essen-
tially equivalent to Gaussian message passing in linear models
[5]. Unknown coefficients in such models introduce multiplier
nodes into the corresponding factor graphs as is exemplified
by Figures 4 and 5.

The EM message out of such multiplier nodes, properly
grouped with “soft” Gaussian nodes / factors as in Figures 4
and 5, is invariably Gaussian (up to a scale factor), but the
computation of its mean and its covariance matrix (in terms
of the parameters of the incoming Gaussian messages) can
be involved, cf. Appendices C–E. It is therefore helpful to
tabulate such messages as exemplified by Table II.

However, such multiplier nodes come in surprisingly many
versions: scalar times scalar, scalar times vector, inner product
of two vectors (as in Fig. 4), general matrix times vector,
products involving matrices with a special structure (as in
Fig. 5), etc. Moreover, the grouping of such multiplier nodes
with suitable soft factors / nodes is another source of virtually
endless variety.

We will therefore confine ourselves to a small number
of cases which appear to be particulary useful and widely

applicable. The general setup is shown in Table III and the
results are given in Tables III and IV. In all cases, we have a
multiplier U = A(Θ)X , whereA(Θ) is a matrix that depends
on Θ, grouped withY = U + Z, where Z is zero-mean
Gaussian with covariance matrixVZ = W−1

Z (or σ2
Z in the

scalar case). In all cases, we assume that Gaussian messages−→µX and←−µY arrive via the edgesX andY , respectively; these
incoming messages are parameterized by the mean vectors
−→mX and←−mY and the covariance matrices

−→
V X =

−→
W−1

X and←−
V Y =

←−
W−1

Y , respectively. The following cases are considered:

1) Inner product:A(Θ) = ΘT , both Θ and X are real
column vectors (of the same dimension), and bothU =
ΘT X andY are real scalars.
This case is a generalization of Table II, as will be
discussed at the end of this section.

2) Real scalarΘ times real column vectorX : A(Θ) = Θ
and bothU = ΘX andY are column vectors.
Some pertinent properties of the trace operator (“tr”) are
recalled in Appendix B.

3) Componentwise product (denoted byΘ ⊙ X) of real
column vectorsΘ andX : A(Θ) = diag(Θ), a diagonal
matrix with the elements ofΘ on the diagonal, and both
U = Θ⊙X andY are column vectors.

4) Autoregression:Θ, X, Y are column vectors inRn and
A(Θ) is the square matrix (50) (which is essentially
a companion matrix). In addition,Z is a zero-mean
Gaussian vector with covariance matrix

VZ =









σ2
Z 0 . . . 0

0 0
...

...
. . .









, (54)

i.e., Z is effectively a scalar that affects only the first
componentY1 of Y .

5) General real matrixΘ times real column vectorX :
A(Θ) = Θ and bothU = ΘX and Y are column
vectors.
The symbol “⊗” in (III.9) and (III.10) denotes the
Kronecker product, cf. (124)–(125). More about this
case is said below.

The case of scalarΘ times scalarX is a common special
case of all these cases and does not need to be considered
separately.

In the cases 1–4, whereΘ is a column vector (or a scalar),
the EM messageeη(θ) is Gaussian with mean vector←−mΘ and
weight matrix (inverse covariance matrix)

←−
WΘ as given in

Table III.
In Case 5, whereΘ is a matrix, we need the following

notation. LetB be anym× n matrix and let

B =







b1

...
bm






(55)

be the decomposition ofB into its rows. We will use both the
row stack vector

rvect(B)
△

= (b1, . . . , bm) (56)
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TABLE III
GAUSSIAN BACKWARD EM MESSAGESeη(θ) THROUGH SOME MULTIPLIER

NODES, SEESECTION V. THE EM MESSAGEeη(θ) IS ALWAYS GAUSSIAN

(UP TO A CONSTANT SCALE FACTOR) WITH PARAMETERS
←−
WΘ AND←−mΘ AS

STATED. SEE ALSO TABLE IV.

-
X

?

Θ

?

A(Θ)

× -
U

N (0, VZ)

?

Z

+ -
Y

g(x, y, θ)

Inner productΘT X of column vectorsΘ andX,
A(Θ) = ΘT :

←−
WΘ = σ−2

Z
(VX + mXmT

X) (III.1)
←−
WΘ
←−mΘ = σ−2

Z
(VXY + mXmY ) (III.2)

ScalarΘ times column vectorX, A(Θ) = Θ:

1/←−σ 2
Θ = tr (WZVX) + mT

XWZmX (III.3)
←−mΘ/←−σ 2

Θ = tr (WZVXY T ) + mT
XWZmY (III.4)

Componentwise productΘ⊙X of column vectorsΘ andX,
A(Θ) = diag(Θ):

←−
WΘ = WZ ⊙

“

VX + mXmT
X

”

(III.5)

←−
WΘ
←−mΘ =

“

WZ ⊙
“

VXY T + mXmT
Y

””

· (1, 1, . . . , 1)T (III.6)

Autoregression, see (50) and (54):

←−
WΘ = σ−2

Z

“

VX + mXmT
X

”

(III.7)

←−
WΘ
←−mΘ = σ−2

Z

`

VXY1
+ mXmY1

´

(III.8)

General matrixΘ times column vectorX, A(Θ) = Θ:
eη(θ) is Gaussian inrvect(θ)T with

←−
WΘ = WZ ⊗ (VX + mXmT

X) (III.9)
←−
WΘ
←−mΘ = (WZ ⊗ In) cvect(VXY T + mXmT

Y ) (III.10)

and the analogous column stack vectorcvect(B), where
the columns ofB are stacked into one column vector. For
example, if

B =

(

b1,1 b1,2

b2,1 b2,2

)

(57)

then rvect(B) = (b1,1, b1,2, b2,1, b2,2) and cvect(B) =

(b1,1, b2,1, b1,2, b2,2)
T . With this notation, the EM message is

Gaussian inrvect(Θ)T with parameters (III.9) and (III.10)
(see also (132)).

Note that Table III gives the analog of (II.1) and (II.2) in

TABLE IV
COMPUTATION OF MEANSmX AND mY AND COVARIANCE MATRICES VX

AND VXY T IN TABLE III.

Auxiliary quantities:

WX =
−→
WX + A(θ̂)T

“

VZ +
←−
V Y

”

−1
A(θ̂) (IV.1)

−→
V Y = A(θ̂)

−→
VXA(θ̂)T + VZ (IV.2)

W̃Y =
“−→

V Y +
←−
V Y

”

−1
(IV.3)

Quantities in Table III:

VX = W−1
X

(IV.4)

=
−→
V X −

−→
V XA(θ̂)T W̃Y A(θ̂)

−→
V X (IV.5)

VXY T =
−→
VXA(θ̂)T W̃Y

←−
V Y (IV.6)

mX = VX

„

−→
WX
−→mX + A(θ̂)T

“

VZ +
←−
V Y

”

−1←−mY

«

(IV.7)

=
“

In −
−→
V XA(θ̂)T W̃Y A(θ̂)

”

·

„

−→mX +
−→
V XA(θ̂)T

“

VZ +
←−
V Y

”

−1←−mY

«

(IV.8)

mY = VY

“−→
WY
−→mY +

←−
WY
←−mY

”

(IV.9)

=
“

Im −
−→
V Y W̃Y

” “

−→mY +
−→
V Y
←−
WY
←−mY

”

(IV.10)

Table II; the analog of (II.3) and (II.4) is Table IV, which
gives expressions for the marginal meansmX and mY and
for the covariance matricesVX andVXY T for fixed Θ = θ̂ in
terms of the parameters−→mX and

−→
V X and←−mY and

←−
V Y of the

incoming Gaussian sum-product messages. Note that Table IV
applies to all the cases in Table III simultaneously.

The proofs of the claims in Table III are given in Ap-
pendix C and the proofs of the claims in Table IV are
given in appendices D and E. Not surprisingly, some of these
derivations are essentially equivalent to similar computations
in the EM literature [33]–[35]. Nevertheless, most of the
statements in Tables III and IV do not seem to be readily
available in the prior literature.

We conclude this section by considering the specialization
of Case 1 (inner product) toY = y fixed, which results in the
situation of Table II. In this case, we have

mY =←−my = y (58)

and
VXY = VY =

←−
V Y = 0. (59)

With the translationsmS = mY and σ2
S = σ2

Z , it is
obvious that (III.1) and (III.2) specialize to (II.1) and (II.2),
respectively. Moreover, withA(θ̂)T = θ̂, it is obvious that
(II.3) follows from (IV.1) and (II.4) follows from (IV.7).

VI. CONCLUSIONS

We have showed that EM may be viewed and used as
a message passing algorithm in factor graphs, and we have
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identified a general “local” EM message computation rule (Ta-
ble I). In some important cases, the EM messages are tractable
expressions, which was exemplified by the EM message out
of multipliers (arising from unknown coefficients) in linear
Gaussian models.

As a full member of the family of message passing algo-
rithms, it is easy to seamlessly combine expectation maxi-
mization with other message passing algorithms in interesting
ways. In particular:

• EM messages (like all messages) may be represented
in many different ways (including Gaussians as in Sec-
tions IV and V, Gaussian mixtures [28], particles [32],
etc., leading to quite different actual computations.

• The freedom (or the necessity) to choose some definite
message update schedule leads to different algorithms
with different performance; more about this will be said
in [28].

• The maximization step amounts to applying the max-
product algorithm to the corresponding subgraph, which
in turn may be carried out by many (exact or approxiate)
message passing algorithms. For example, in some impor-
tant applications (as, e.g., in Section IV), the maximiza-
tion step can be done by Kalman filtering / smoothing.

• The expectation step relies on plain sum-product mes-
sages. However, depending on the involved nodes and
message types, the sum-product algorithm may be real-
ized (exactly or approximately) in many different ways,
cf. [5, Section VI].

Moreover, it is a general observation that tabulated mes-
sage computation rules can greatly simplify the derivationof
message passing algorithms [5]. This applies, in particular, to
EM messages, which we have tabulated for various multiplier
nodes (scalar, vector, general matrix, . . . ) with incoming
Gaussian messages. With these message tables, EM algorithms
for a number of basic linear-system identification problems
can easily be composed without additional derivations or
computations. More such tables will be given in [28].

APPENDIX A
PROOF OFEQUATION (6)

We give a variation of a standard proof (cf. [9]) that is
adapted to the setup of Section II. The heart of the proof is
the following fact.

Lemma: The function

f̃(θ, θ̂)
△

= f(θ̂) +

∫

x

f(x, θ̂) log

(

f(x, θ)

f(x, θ̂)

)

dx (60)

(where “log” denotes the natural logarithm) satisfies both

f̃(θ, θ̂) ≤ f(θ) (61)

and

f̃(θ, θ) = f(θ). (62)

2

Proof: The equality (62) is obvious. The inequality (61)
follows from eliminating the logarithm in (60) by the inequal-
ity log(x) ≤ x− 1 for x > 0:

f̃(θ, θ̂) ≤ f(θ̂) +

∫

x

f(x, θ̂)

(

f(x, θ)

f(x, θ̂)
− 1

)

dx (63)

= f(θ̂) +

∫

x

f(x, θ) dx −
∫

x

f(x, θ̂) dx (64)

= f(θ). (65)

To prove (6), we first note that (5) is equivalent to

θ̂(k+1) = argmax
θ

f̃(θ, θ̂(k)). (66)

We then obtain

f(θ̂(k)) = f̃(θ̂(k), θ̂(k)) (67)

≤ f̃(θ̂(k+1), θ̂(k)) (68)

≤ f(θ̂(k+1)), (69)

where (67) follows from (62), (68) follows from (66), and (69)
follows from (61).

APPENDIX B
SOME PROPERTIES OF THETRACE OPERATOR

We recall some pertinent properties of the trace operator
for use in Appendix C-B. The entries of a matrixA will be
denoted byak,ℓ. The trace of a square matrixA is the sum of
the diagonal elements ofA:

tr(A)
△

=
∑

k

ak,k. (70)

For matricesA andB such thatAB is a square matrix (i.e.,
B has the same dimensions asAT ), we have

tr(AB) =
∑

k

∑

ℓ

ak,ℓbℓ,k (71)

= tr(BA). (72)

In particular, if x and y are column vectors (with the same
number of rows), we have

xT y = yT x = tr(xyT ). (73)

Moreover, forW = AT A, we have

xT Wy = (Ax)T Ay (74)

= tr(Ax(Ay)T ) (75)

= tr(AxyTAT ), (76)

and using (72) we further obtain

xT Wy = tr(WxyT ) (77)

= tr(xyT W ). (78)

Now let X andY be random column vectors with the same
dimensions. LetmX

△

= E[X ] andmY
△

= E[Y ] and

VXY T

△

= E
[

(X −mX)(Y −mY )T
]

. (79)
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Then, for any square matrixW as above (i.e.,W = AT A)
with suitable dimensions, we have

E
[

XT WY
]

= E
[

(X −mX)T W (Y −mY )
]

+ mT
XWmY (80)

= E
[

tr
(

W (X −mX)(Y −mY )T
)]

+ mT
XWmY (81)

= tr (WVXY T ) + mT
XWmY . (82)

APPENDIX C
PROOFS OF THECLAIMS IN TABLE III

Recall (for repeated use below) that the probability density
function of ann-dimensional real Gaussian random vector

f(x) =

√

det(W )

(2π)n
e−

1

2
(x−m)T W (x−m) (83)

∝ e−
1

2
(xT Wx−2xT Wm), (84)

wherem is the mean vector andW = V −1 (a positive definite
matrix) is the inverse of the covariance matrixV . In the scalar
case (n = 1), we will also use the notationσ2 △

= V .
Now consider the factor graph in Table III. The closed-box

function g(x, y, θ) is obtained by marginalization / integration
over the variables inside the dashed box:

g(x, y, θ)

=

∫

u

δ(u−A(θ)x)

√

det(WZ)

(2π)n
e−

1

2
(y−u)T WZ(y−u) du (85)

=

√

det(WZ)

(2π)n
e−

1

2
(y−A(θ)x)T WZ(y−A(θ)x). (86)

The exponent (I.1) of the EM messageeη(θ) is

η(θ) = E[log g(X, Y, θ)] (87)

=
1

2
log

(

det(WZ )

(2π)n

)

− 1

2
E
[

(Y −A(θ)X)T WZ(Y −A(θ)X)
]

(88)

= const− 1

2

(

E
[

(A(θ)X)T WZ(A(θ)X)
]

− 2E
[

(A(θ)X)T WZY
]

)

, (89)

where all logarithms are natural, where the expectation is over
X and Y (with respect to the local probability (137)), and
where “const” subsumes all terms that do not depend onθ.

We are now ready to discuss the individual cases of Ta-
ble III.

A. Inner ProductΘT X of Column VectorsΘ and X

In this case, we haveA(θ) = θT . The quantitiesθT X , Y ,
andWZ are scalars; in particular,(θT X)T = θT X . Thus (89)

becomes

η(θ) = −1

2

(

E
[

(θT X)T WZ(θT X)
]

− 2E
[

(θT X)T WZY
]

)

+ const (90)

= −1

2

(

E
[

θT XWZXT θ
]

− 2E
[

θT XWZY
]

)

+ const (91)

= −1

2

(

θT E
[

XWZXT
]

θ − 2θT E[XWZY ]
)

+ const. (92)

It is then obvious from (84) that the EM messageeη(θ) is
Gaussian (up to a scale factor) with weight matrix

←−
WΘ = E

[

XXT
]

σ−2
Z (93)

=
VX + mXmT

X

σ2
Z

(94)

and
←−
WΘ
←−mΘ = E[XY ] σ−2

Z (95)

=
VXY + mXmY

σ2
Z

(96)

B. ScalarΘ Times Column VectorX

In this case, we haveA(θ) = θ, a scalar, and (89) becomes

η(θ) = const− 1

2

(

θ2E
[

XT WZX
]

−2θE
[

XT WZY
]

)

. (97)

It follows from (84) thateη(θ) is Gaussian with
←−σ −2

Θ = E
[

XT WZX
]

(98)

= tr (WZVX) + mT
XWZmX (99)

and
←−mΘ/←−σ 2

Θ = E
[

XT WZY
]

(100)

= tr (WZVXY T ) + mT
XWZmY (101)

where (99) and (101) follow from (82) and withVXY T defined
as in (155).

C. Componentwise ProductΘ⊙X of Column Vectors

In this case, we haveA(θ) = diag(θ), a diagonal matrix
with the elements ofθ on the diagonal, and (89) becomes

η(θ) = const− 1

2

(

E
[

(diag(θ)X)T WZ(diag(θ)X)
]

− 2E
[

(diag(θ)X)T WZY
]

)

(102)

= const− 1

2

(

E
[

(diag(X)θ)T WZ(diag(X)θ)
]

− 2E
[

(diag(X)θ)T WZY
]

)

(103)

= const− 1

2

(

θT E[diag(X)WZ diag(X)] θ

− 2θT E[diag(X)WZY ]
)

. (104)

It follows from (84) thateη(θ) is Gaussian with
←−
WΘ = E[diag(X)WZ diag(X)] (105)

= WZ ⊙ E
[

XXT
]

(106)

= WZ ⊙
(

VX + mXmT
X

)

(107)
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and

←−
WΘ
←−mΘ = E[diag(X)WZY ] (108)

= E
[

diag(X)WZ diag(Y ) (1, 1, . . . , 1)
T
]

(109)

=
(

WZ ⊙ E
[

XY T
])

(1, 1, . . . , 1)T (110)

=
(

WZ ⊙
(

VXY T + mXmT
Y

))

(1, 1, . . . , 1)
T
. (111)

D. Autoregression (Companion Matrix)

In this case, recall from (50) that

A(θ)
△

=

(

θT

In−1 0

)

(112)

wheren is the dimension of the column vectorθ, and where
In−1 is the (n− 1)× (n− 1) identity matrix.

Before we proceed, we need to address the following issue.
According to (54), we have

VZ =









σ2
Z 0 0 . . . 0
0 ε 0 . . . 0
0 0 ε . . .
. . .









(113)

with ε = 0, which creates a problem withWZ = V −1
Z . We

address this problem by proceeding with (113) withε > 0. As
it turns out, the resulting expression forη(θ) does not depend
on ε (except in an additive constant, which we ignore).

Using (112), (89) becomes

η(θ) = const− 1

2

(

E























θT X
X1

...
Xn−1











T

WZ











θT X
X1

...
Xn−1























− 2E























θT X
X1

...
Xn−1











T

WZY













)

. (114)

Using (113) and ignoring all constant terms yields

η(θ) = const

− 1

2

(

E
[

θT Xσ−2
Z θT X

]

− 2E
[

θT Xσ−2
Z Y1

]

)

(115)

= const

− 1

2

(

θT σ−2
Z E

[

XXT
]

θ − 2θT σ−2
Z E[XY1]

)

. (116)

It follows from (84) thateη(θ) is Gaussian with

←−
WΘ = σ−2

Z E
[

XXT
]

(117)

= σ−2
Z

(

VX + mXmT
X

)

(118)

and

←−
WΘ
←−mΘ = σ−2

Z E[XY1] (119)

= σ−2
Z (VXY1

+ mXmY1
) . (120)

E. General MatrixΘ Times Column VectorX

We need to begin with some preparations. Recall the row
stack operatorrvect (56) and the corresponding column stack
operatorscvect. Let A be an m × n matrix with rows
a1, . . . , am. For any column vectorx ∈ R

n and anym ×m
square matrixW (with elementswk,ℓ), we have

(Ax)T WAx = (a1x, . . . , amx)W







a1x
...

amx






(121)

=

m
∑

k=1

m
∑

ℓ=1

akxwk,ℓ(aℓx) (122)

=

m
∑

k=1

m
∑

ℓ=1

akwk,ℓxxTaT
ℓ (123)

= (a1, . . . , am)

·







w1,1xxT . . . w1,mxxT

...
...

wm,1xxT . . . wm,mxxT













aT
1
...

aT
m






(124)

= rvect(A)
(

W ⊗ xxT
)

rvect(A)T . (125)

Moreover, for any column vectory ∈ R
m, we have

(Ax)T Wy = (a1x, . . . , amx)W







y1

...
ym






(126)

=
m
∑

k=1

m
∑

ℓ=1

akxwk,ℓyℓ (127)

=

m
∑

k=1

m
∑

ℓ=1

akwk,ℓxyℓ (128)

= (a1, . . . , am)

·







w1,1In . . . w1,mIn

...
...

wm,1In . . . wm,mIn













xy1

...
xym






(129)

= rvect(A) (W ⊗ In) cvect(xyT ). (130)

After these preparations, we return to the EM message for
the case whereA(θ) = Θ is a generalm× n matrix. In this
case, (89) becomes

η(Θ) = const−1

2

(

E
[

(ΘX)T WZ(ΘX)
]

−2E
[

(ΘX)T WZY
]

)

(131)
and using (125) and (130) we obtain

η(Θ) = const− 1

2

(

rvect(Θ)E
[

WZ ⊗XXT
]

rvect(Θ)T

− 2 rvect(Θ)E
[

(WZ ⊗ In) cvect(XY T )
]

)

. (132)

We now see thateη(Θ) is Gaussian inrvect(Θ)T with
←−
WΘ = WZ ⊗ E

[

XXT
]

(133)

= WZ ⊗ (VX + mXmT
X) (134)

and
←−
WΘ
←−mΘ = (WZ ⊗ In) cvect(E

[

XY T
]

) (135)

= (WZ ⊗ In) cvect(VXY T + mXmT
Y ). (136)
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Fig. 6. Factor graph for Appendix D.

APPENDIX D
PROOFS OF THECLAIMS IN TABLE IV EXCEPT (IV.6)

We consider the computation of the mean vectorsmX and
mY and the covariance matrixVX with respect to the local
probability density (I.3)

plocal(x, y| θ̂) ∝ g(x, y, θ̂)−→µX(x)←−µY (y) (137)

with g(x, y, θ) as in Table III (see also (86)) and where−→µX

and←−µY are the incoming Gaussian sum-product messages
with parameters−→mX and

−→
V X (or

−→
WX =

−→
V −1

X ) and←−mY and←−
V Y (or

←−
WY =

←−
V −1

Y ), respectively.
Throughout this section,Θ = θ̂ is fixed and we will simply

write A instead ofA(θ̂). The factor graph of Table III then
reduces to the factor graph of Fig. 6. The desired quantities
may be obtained by Gaussian sum-product message passing
in this factor graph. In the following computations, we will
frequently use Tables 2 and 3 of [5] without special notice;
the reader is advised to have these tables at hand.

Equation (IV.1) follows from

WX =
−→
WX +

←−
WX (138)

=
−→
WX + AT←−WUA (139)

=
−→
WX + AT

(

VZ +
←−
V Y

)

−1

A. (140)

Equation (IV.2) is immediate from
−→
V Y =

−→
V U + VZ (141)

= A
−→
VXAT + VZ . (142)

Equation (IV.3) is the definition of̃W as in [5, eq. (56)].
Equation (IV.5) follows from [5, (I.4) and (III.8)]:

VX =
−→
V X −

−→
V XW̃X

−→
V X (143)

=
−→
V X −

−→
V XAT W̃Y A

−→
V X . (144)

Equation (IV.7) follows from

WXmX =
−→
WX
−→mX +

←−
WX
←−mX (145)

=
−→
WX
−→mX + AT←−WU

←−mU (146)

=
−→
WX
−→mX + AT

(

VZ +
←−
V Y

)

−1←−mY . (147)

Using (144) and (147), Equation (IV.8) follows from

mX = VXWXmX (148)

=
(−→

V X −
−→
V XAT W̃Y A

−→
V X

)

·
(−→

WX
−→mX + AT

(

VZ +
←−
V Y

)

−1←−mY

)

(149)

=
(

In −
−→
V XAT W̃Y A

)

·
(

−→mX +
−→
V XAT

(

VZ +
←−
V Y

)

−1←−mY

)

. (150)

-
X
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„

U
X

«

+

N (0, VZ)

?

Z

B

?
-

„

Y
X

«

C -
Y

Fig. 7. Factor graph for Appendix E.

Equation (IV.9) is immediate from

WY mY =
−→
WY
−→mY +

←−
WY
←−mY . (151)

Finally, Equation (IV.10), is obtained using [5, (eq. I.4)]:

mY = VY WY mY (152)

=
(−→

V Y −
−→
V Y W̃Y

−→
V Y

)(−→
WY
−→mY +

←−
WY
←−mY

)

(153)

=
(

Im −
−→
V Y W̃Y

)(−→mY +
−→
V Y
←−
WY
←−mY

)

. (154)

APPENDIX E
PROOF OF(IV.6)

We need to compute the covariance matrix

VXY T

△

= E
[

(X −mX)(Y −mY )T
]

(155)

with respect to the local probability density (137). Consider
the factor graph shown in Fig. 7 with block matrices

A′ △

=

(

A
In

)

, (156)

B
△

=

(

Im

0

)

, (157)

C
△

=
(

Im, 0
)

, (158)

where n and m are the dimensions of the column vectors
X and Y , respectively. This factor graph is obtained from
the factor graph in Table III by stretching the variableX
accross the adder node so that the variablesX and Y now
appear jointly as components of the vector(Y T , XT )T on the
correspondingly labeled edge. The closed-box functiong(x, y)
in Fig. 7 equals the closed-box functiong(x, y, θ̂) in the factor
graph in Table III.

The desired matrixVXY T is the lower left corner of the
covariance matrix

V“

Y

X

” =

(

VY VXT Y

VXY T VX

)

, (159)

which can be computed by Gaussian sum-product message
passing in Fig. 7. As in Appendix D, we will use Tables 2
and 3 of [5] without special notice. We have

−→
V“

U

X

” = A′
−→
VX(A′)T (160)

=

(

A
−→
VXAT A

−→
VX−→

VXAT −→
VX

)

(161)
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and
−→
V“

Y

X

” =
−→
V“

U

X

” + BVZBT (162)

=

(

A
−→
VXAT + VZ A

−→
VX−→

VXAT −→
VX

)

. (163)

We also have

W“

Y

X

” =
−→
W“

Y

X

” +
←−
W“

Y

X

” (164)

=
−→
V −1

“

Y

X

” + CT←−V −1
Y C (165)

and the Matrix Inversion Lemma (see, e.g., [5, eq. (181)])
yields

V“

Y

X

” =
−→
V“

Y

X

” −−→V“

Y

X

”CT

·
(←−

V Y + C
−→
V“

Y

X

”CT

)

−1

C
−→
V“

Y

X

” (166)

=
−→
V“

Y

X

” −−→V“

Y

X

”CT

·
(←−

V Y + A
−→
VXAT + VZ

)

−1

C
−→
V“

Y

X

” (167)

=
−→
V“

Y

X

” −
(

A
−→
VXAT + VZ−→

VXAT

)

·
(←−

V Y + A
−→
VXAT + VZ

)

−1

·
(

A
−→
VXAT + VZ , A

−→
VX

)

. (168)

The lower left corner of this matrix is

VXY T =
−→
VXAT −−→VXAT

(←−
V Y + A

−→
VXAT + VZ

)

−1

·
(

A
−→
VXAT + VZ

)

(169)

=
−→
VXAT

(←−
V Y + A

−→
VXAT + VZ

)

−1

·
((←−

V Y + A
−→
VXAT + VZ

)

−
(

A
−→
VXAT + VZ

))

(170)

=
−→
VXAT

(

A
−→
VXAT + VZ +

←−
V Y

)

−1←−
V Y (171)

and using

W̃Y =
(

A
−→
V XAT + VZ +

←−
V Y

)

−1

(172)

from (IV.3) and (IV.2) yields (IV.6).
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