Recursive State Estimation¶
Assume a state space model $p(x_t,z_t|z_{t-1})=p(x_t|z_t) p(z_t|z_{t-1})$.
Find a recursive state update $p(z_t|x^t)$ from a prior estimate $p(z_{t-1}|x^{t-1})$ and a new observation $x_t$
$$\begin{align*}
\underbrace{p(z_t|x^t)}_{\text{posterior}} &= \left(1/p(x^t)\right) p(z_t,x^t) \\
&= \left(1/p(x^t)\right) \int p(z_t,x_t,x^{t-1},z_{t-1}) \mathrm{d} z_{t-1} \\
&= \left(1/p(x^t)\right) \int p(z_t,x_t|x^{t-1},z_{t-1}) p(x^{t-1},z_{t-1}) \mathrm{d} z_{t-1} \\
&= \frac{p(x^{t-1})}{p(x^t)} \int p(z_t,x_t|x^{t-1},z_{t-1}) p(z_{t-1}|x^{t-1}) \mathrm{d} z_{t-1} \\
&= \underbrace{\frac{1}{p(x_t|x^{t-1})}}_{\text{normalization}} \underbrace{p(x_t|z_t)}_{\text{observation}}\int \underbrace{p(z_t|z_{t-1})}_{\text{transition}} \underbrace{p(z_{t-1}|x^{t-1})}_{\text{prior}} \mathrm{d} z_{t-1}
\end{align*}$$