from tsfresh.feature_extraction import extract_features
from tsfresh.feature_extraction.settings import ComprehensiveFCParameters, MinimalFCParameters, EfficientFCParameters
from tsfresh.feature_extraction.settings import from_columns
import numpy as np
import pandas as pd
/Users/mchrist/Documents/Research/tsfresh/venv/lib/python2.7/site-packages/statsmodels/compat/pandas.py:56: FutureWarning: The pandas.core.datetools module is deprecated and will be removed in a future version. Please use the pandas.tseries module instead. from pandas.core import datetools
This notebooks illustrates the "fc_parameters"
or "kind_to_fc_parameters"
dictionaries.
For a detailed explanation, see also http://tsfresh.readthedocs.io/en/latest/text/feature_extraction_settings.html
We construct the time series container that includes two sensor time series, "temperature" and "pressure", for two devices "a" and "b"
df = pd.DataFrame({"id": ["a", "a", "b", "b"], "temperature": [1,2,3,1], "pressure": [-1, 2, -1, 7]})
df
id | pressure | temperature | |
---|---|---|---|
0 | a | -1 | 1 |
1 | a | 2 | 2 |
2 | b | -1 | 3 |
3 | b | 7 | 1 |
Which features are calculated by tsfresh is controlled by a dictionary that contains a mapping from feature calculator names to their parameters.
This dictionary is called fc_parameters
. It maps feature calculator names (=keys) to parameters (=values). As keys, always the same names as in the tsfresh.feature_extraction.feature_calculators module are used.
In the following we load an exemplary dictionary
settings_minimal = MinimalFCParameters() # only a few basic features
settings_minimal
{'length': None, 'maximum': None, 'mean': None, 'median': None, 'minimum': None, 'standard_deviation': None, 'sum_values': None, 'variance': None}
This dictionary can passed to the extract method, resulting in a few basic time series beeing calculated:
X_tsfresh = extract_features(df, column_id="id", default_fc_parameters = settings_minimal)
X_tsfresh.head()
Feature Extraction: 100%|██████████| 4/4 [00:00<00:00, 16336.14it/s]
variable | pressure__length | pressure__maximum | pressure__mean | pressure__median | pressure__minimum | pressure__standard_deviation | pressure__sum_values | pressure__variance | temperature__length | temperature__maximum | temperature__mean | temperature__median | temperature__minimum | temperature__standard_deviation | temperature__sum_values | temperature__variance |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | ||||||||||||||||
a | 2.0 | 2.0 | 0.5 | 0.5 | -1.0 | 1.5 | 1.0 | 2.25 | 2.0 | 2.0 | 1.5 | 1.5 | 1.0 | 0.5 | 3.0 | 0.25 |
b | 2.0 | 7.0 | 3.0 | 3.0 | -1.0 | 4.0 | 6.0 | 16.00 | 2.0 | 3.0 | 2.0 | 2.0 | 1.0 | 1.0 | 4.0 | 1.00 |
By using the settings_minimal as value of the default_fc_parameters parameter, those settings are used for all type of time series. In this case, the settings_minimal
dictionary is used for both "temperature" and "pressure" time series.
Now, lets say we want to remove the length feature and prevent it from beeing calculated. We just delete it from the dictionary.
del settings_minimal["length"]
settings_minimal
{'maximum': None, 'mean': None, 'median': None, 'minimum': None, 'standard_deviation': None, 'sum_values': None, 'variance': None}
Now, if we extract features for this reduced dictionary, the length feature will not be calculated
X_tsfresh = extract_features(df, column_id="id", default_fc_parameters = settings_minimal)
X_tsfresh.head()
Feature Extraction: 100%|██████████| 4/4 [00:00<00:00, 1171.27it/s]
variable | pressure__maximum | pressure__mean | pressure__median | pressure__minimum | pressure__standard_deviation | pressure__sum_values | pressure__variance | temperature__maximum | temperature__mean | temperature__median | temperature__minimum | temperature__standard_deviation | temperature__sum_values | temperature__variance |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | ||||||||||||||
a | 2.0 | 0.5 | 0.5 | -1.0 | 1.5 | 1.0 | 2.25 | 2.0 | 1.5 | 1.5 | 1.0 | 0.5 | 3.0 | 0.25 |
b | 7.0 | 3.0 | 3.0 | -1.0 | 4.0 | 6.0 | 16.00 | 3.0 | 2.0 | 2.0 | 1.0 | 1.0 | 4.0 | 1.00 |
now, lets say we do not want to calculate the same features for both type of time series. Instead there should be different sets of features for each kind.
To do that, we can use the kind_to_fc_parameters
parameter, which lets us finely specifiy which fc_parameters
we want to use for which kind of time series:
fc_parameters_pressure = {"length": None,
"sum_values": None}
fc_parameters_temperature = {"maximum": None,
"minimum": None}
kind_to_fc_parameters = {
"temperature": fc_parameters_temperature,
"pressure": fc_parameters_pressure
}
print(kind_to_fc_parameters)
{'pressure': {'length': None, 'sum_values': None}, 'temperature': {'minimum': None, 'maximum': None}}
So, in this case, for sensor "pressure" both "max" and "min" are calculated. For the "temperature" signal, the length and sum_values features are extracted instead.
X_tsfresh = extract_features(df, column_id="id", kind_to_fc_parameters = kind_to_fc_parameters)
X_tsfresh.head()
Feature Extraction: 100%|██████████| 4/4 [00:00<00:00, 1473.37it/s]
variable | pressure__length | pressure__sum_values | temperature__maximum | temperature__minimum |
---|---|---|---|---|
id | ||||
a | 2.0 | 1.0 | 2.0 | 1.0 |
b | 2.0 | 6.0 | 3.0 | 1.0 |
So, lets say we lost the kind_to_fc_parameters dictionary. Or we apply a feature selection algorithm to drop irrelevant feature columns, so our extraction settings contain irrelevant features.
In both cases, we can use the provided "from_columns" method to infer the creating dictionary from the dataframe containing the features
recovered_settings = from_columns(X_tsfresh)
recovered_settings
{'pressure': {'length': None, 'sum_values': None}, 'temperature': {'maximum': None, 'minimum': None}}
Lets drop a column to show that the inferred settings dictionary really changes
X_tsfresh.iloc[:, 1:]
variable | pressure__sum_values | temperature__maximum | temperature__minimum |
---|---|---|---|
id | |||
a | 1.0 | 2.0 | 1.0 |
b | 6.0 | 3.0 | 1.0 |
recovered_settings = from_columns(X_tsfresh.iloc[:, 1:])
recovered_settings
{'pressure': {'sum_values': None}, 'temperature': {'maximum': None, 'minimum': None}}
We provide custom fc_parameters dictionaries with greater sets of features.
The EfficientFCParameters
contain features and parameters that should be calculated quite fastly:
settings_efficient = EfficientFCParameters()
settings_efficient
{'abs_energy': None, 'absolute_sum_of_changes': None, 'agg_autocorrelation': [{'f_agg': 'mean'}, {'f_agg': 'median'}, {'f_agg': 'var'}], 'agg_linear_trend': [{'attr': 'rvalue', 'chunk_len': 5, 'f_agg': 'max'}, {'attr': 'rvalue', 'chunk_len': 5, 'f_agg': 'min'}, {'attr': 'rvalue', 'chunk_len': 5, 'f_agg': 'mean'}, {'attr': 'rvalue', 'chunk_len': 5, 'f_agg': 'var'}, {'attr': 'rvalue', 'chunk_len': 10, 'f_agg': 'max'}, {'attr': 'rvalue', 'chunk_len': 10, 'f_agg': 'min'}, {'attr': 'rvalue', 'chunk_len': 10, 'f_agg': 'mean'}, {'attr': 'rvalue', 'chunk_len': 10, 'f_agg': 'var'}, {'attr': 'rvalue', 'chunk_len': 50, 'f_agg': 'max'}, {'attr': 'rvalue', 'chunk_len': 50, 'f_agg': 'min'}, {'attr': 'rvalue', 'chunk_len': 50, 'f_agg': 'mean'}, {'attr': 'rvalue', 'chunk_len': 50, 'f_agg': 'var'}, {'attr': 'intercept', 'chunk_len': 5, 'f_agg': 'max'}, {'attr': 'intercept', 'chunk_len': 5, 'f_agg': 'min'}, {'attr': 'intercept', 'chunk_len': 5, 'f_agg': 'mean'}, {'attr': 'intercept', 'chunk_len': 5, 'f_agg': 'var'}, {'attr': 'intercept', 'chunk_len': 10, 'f_agg': 'max'}, {'attr': 'intercept', 'chunk_len': 10, 'f_agg': 'min'}, {'attr': 'intercept', 'chunk_len': 10, 'f_agg': 'mean'}, {'attr': 'intercept', 'chunk_len': 10, 'f_agg': 'var'}, {'attr': 'intercept', 'chunk_len': 50, 'f_agg': 'max'}, {'attr': 'intercept', 'chunk_len': 50, 'f_agg': 'min'}, {'attr': 'intercept', 'chunk_len': 50, 'f_agg': 'mean'}, {'attr': 'intercept', 'chunk_len': 50, 'f_agg': 'var'}, {'attr': 'slope', 'chunk_len': 5, 'f_agg': 'max'}, {'attr': 'slope', 'chunk_len': 5, 'f_agg': 'min'}, {'attr': 'slope', 'chunk_len': 5, 'f_agg': 'mean'}, {'attr': 'slope', 'chunk_len': 5, 'f_agg': 'var'}, {'attr': 'slope', 'chunk_len': 10, 'f_agg': 'max'}, {'attr': 'slope', 'chunk_len': 10, 'f_agg': 'min'}, {'attr': 'slope', 'chunk_len': 10, 'f_agg': 'mean'}, {'attr': 'slope', 'chunk_len': 10, 'f_agg': 'var'}, {'attr': 'slope', 'chunk_len': 50, 'f_agg': 'max'}, {'attr': 'slope', 'chunk_len': 50, 'f_agg': 'min'}, {'attr': 'slope', 'chunk_len': 50, 'f_agg': 'mean'}, {'attr': 'slope', 'chunk_len': 50, 'f_agg': 'var'}, {'attr': 'stderr', 'chunk_len': 5, 'f_agg': 'max'}, {'attr': 'stderr', 'chunk_len': 5, 'f_agg': 'min'}, {'attr': 'stderr', 'chunk_len': 5, 'f_agg': 'mean'}, {'attr': 'stderr', 'chunk_len': 5, 'f_agg': 'var'}, {'attr': 'stderr', 'chunk_len': 10, 'f_agg': 'max'}, {'attr': 'stderr', 'chunk_len': 10, 'f_agg': 'min'}, {'attr': 'stderr', 'chunk_len': 10, 'f_agg': 'mean'}, {'attr': 'stderr', 'chunk_len': 10, 'f_agg': 'var'}, {'attr': 'stderr', 'chunk_len': 50, 'f_agg': 'max'}, {'attr': 'stderr', 'chunk_len': 50, 'f_agg': 'min'}, {'attr': 'stderr', 'chunk_len': 50, 'f_agg': 'mean'}, {'attr': 'stderr', 'chunk_len': 50, 'f_agg': 'var'}], 'ar_coefficient': [{'coeff': 0, 'k': 10}, {'coeff': 1, 'k': 10}, {'coeff': 2, 'k': 10}, {'coeff': 3, 'k': 10}, {'coeff': 4, 'k': 10}], 'augmented_dickey_fuller': [{'attr': 'teststat'}, {'attr': 'pvalue'}, {'attr': 'usedlag'}], 'autocorrelation': [{'lag': 0}, {'lag': 1}, {'lag': 2}, {'lag': 3}, {'lag': 4}, {'lag': 5}, {'lag': 6}, {'lag': 7}, {'lag': 8}, {'lag': 9}], 'binned_entropy': [{'max_bins': 10}], 'c3': [{'lag': 1}, {'lag': 2}, {'lag': 3}], 'change_quantiles': [{'f_agg': 'mean', 'isabs': False, 'qh': 0.2, 'ql': 0.0}, {'f_agg': 'var', 'isabs': False, 'qh': 0.2, 'ql': 0.0}, {'f_agg': 'mean', 'isabs': True, 'qh': 0.2, 'ql': 0.0}, {'f_agg': 'var', 'isabs': True, 'qh': 0.2, 'ql': 0.0}, {'f_agg': 'mean', 'isabs': False, 'qh': 0.4, 'ql': 0.0}, {'f_agg': 'var', 'isabs': False, 'qh': 0.4, 'ql': 0.0}, {'f_agg': 'mean', 'isabs': True, 'qh': 0.4, 'ql': 0.0}, {'f_agg': 'var', 'isabs': True, 'qh': 0.4, 'ql': 0.0}, {'f_agg': 'mean', 'isabs': False, 'qh': 0.6, 'ql': 0.0}, {'f_agg': 'var', 'isabs': False, 'qh': 0.6, 'ql': 0.0}, {'f_agg': 'mean', 'isabs': True, 'qh': 0.6, 'ql': 0.0}, {'f_agg': 'var', 'isabs': True, 'qh': 0.6, 'ql': 0.0}, {'f_agg': 'mean', 'isabs': False, 'qh': 0.8, 'ql': 0.0}, {'f_agg': 'var', 'isabs': False, 'qh': 0.8, 'ql': 0.0}, {'f_agg': 'mean', 'isabs': True, 'qh': 0.8, 'ql': 0.0}, {'f_agg': 'var', 'isabs': True, 'qh': 0.8, 'ql': 0.0}, {'f_agg': 'mean', 'isabs': False, 'qh': 1.0, 'ql': 0.0}, {'f_agg': 'var', 'isabs': False, 'qh': 1.0, 'ql': 0.0}, {'f_agg': 'mean', 'isabs': True, 'qh': 1.0, 'ql': 0.0}, {'f_agg': 'var', 'isabs': True, 'qh': 1.0, 'ql': 0.0}, {'f_agg': 'mean', 'isabs': False, 'qh': 0.2, 'ql': 0.2}, {'f_agg': 'var', 'isabs': False, 'qh': 0.2, 'ql': 0.2}, {'f_agg': 'mean', 'isabs': True, 'qh': 0.2, 'ql': 0.2}, {'f_agg': 'var', 'isabs': True, 'qh': 0.2, 'ql': 0.2}, {'f_agg': 'mean', 'isabs': False, 'qh': 0.4, 'ql': 0.2}, {'f_agg': 'var', 'isabs': False, 'qh': 0.4, 'ql': 0.2}, {'f_agg': 'mean', 'isabs': True, 'qh': 0.4, 'ql': 0.2}, {'f_agg': 'var', 'isabs': True, 'qh': 0.4, 'ql': 0.2}, {'f_agg': 'mean', 'isabs': False, 'qh': 0.6, 'ql': 0.2}, {'f_agg': 'var', 'isabs': False, 'qh': 0.6, 'ql': 0.2}, {'f_agg': 'mean', 'isabs': True, 'qh': 0.6, 'ql': 0.2}, {'f_agg': 'var', 'isabs': True, 'qh': 0.6, 'ql': 0.2}, {'f_agg': 'mean', 'isabs': False, 'qh': 0.8, 'ql': 0.2}, {'f_agg': 'var', 'isabs': False, 'qh': 0.8, 'ql': 0.2}, {'f_agg': 'mean', 'isabs': True, 'qh': 0.8, 'ql': 0.2}, {'f_agg': 'var', 'isabs': True, 'qh': 0.8, 'ql': 0.2}, {'f_agg': 'mean', 'isabs': False, 'qh': 1.0, 'ql': 0.2}, {'f_agg': 'var', 'isabs': False, 'qh': 1.0, 'ql': 0.2}, {'f_agg': 'mean', 'isabs': True, 'qh': 1.0, 'ql': 0.2}, {'f_agg': 'var', 'isabs': True, 'qh': 1.0, 'ql': 0.2}, {'f_agg': 'mean', 'isabs': False, 'qh': 0.2, 'ql': 0.4}, {'f_agg': 'var', 'isabs': False, 'qh': 0.2, 'ql': 0.4}, {'f_agg': 'mean', 'isabs': True, 'qh': 0.2, 'ql': 0.4}, {'f_agg': 'var', 'isabs': True, 'qh': 0.2, 'ql': 0.4}, {'f_agg': 'mean', 'isabs': False, 'qh': 0.4, 'ql': 0.4}, {'f_agg': 'var', 'isabs': False, 'qh': 0.4, 'ql': 0.4}, {'f_agg': 'mean', 'isabs': True, 'qh': 0.4, 'ql': 0.4}, {'f_agg': 'var', 'isabs': True, 'qh': 0.4, 'ql': 0.4}, {'f_agg': 'mean', 'isabs': False, 'qh': 0.6, 'ql': 0.4}, {'f_agg': 'var', 'isabs': False, 'qh': 0.6, 'ql': 0.4}, {'f_agg': 'mean', 'isabs': True, 'qh': 0.6, 'ql': 0.4}, {'f_agg': 'var', 'isabs': True, 'qh': 0.6, 'ql': 0.4}, {'f_agg': 'mean', 'isabs': False, 'qh': 0.8, 'ql': 0.4}, {'f_agg': 'var', 'isabs': False, 'qh': 0.8, 'ql': 0.4}, {'f_agg': 'mean', 'isabs': True, 'qh': 0.8, 'ql': 0.4}, {'f_agg': 'var', 'isabs': True, 'qh': 0.8, 'ql': 0.4}, {'f_agg': 'mean', 'isabs': False, 'qh': 1.0, 'ql': 0.4}, {'f_agg': 'var', 'isabs': False, 'qh': 1.0, 'ql': 0.4}, {'f_agg': 'mean', 'isabs': True, 'qh': 1.0, 'ql': 0.4}, {'f_agg': 'var', 'isabs': True, 'qh': 1.0, 'ql': 0.4}, {'f_agg': 'mean', 'isabs': False, 'qh': 0.2, 'ql': 0.6}, {'f_agg': 'var', 'isabs': False, 'qh': 0.2, 'ql': 0.6}, {'f_agg': 'mean', 'isabs': True, 'qh': 0.2, 'ql': 0.6}, {'f_agg': 'var', 'isabs': True, 'qh': 0.2, 'ql': 0.6}, {'f_agg': 'mean', 'isabs': False, 'qh': 0.4, 'ql': 0.6}, {'f_agg': 'var', 'isabs': False, 'qh': 0.4, 'ql': 0.6}, {'f_agg': 'mean', 'isabs': True, 'qh': 0.4, 'ql': 0.6}, {'f_agg': 'var', 'isabs': True, 'qh': 0.4, 'ql': 0.6}, {'f_agg': 'mean', 'isabs': False, 'qh': 0.6, 'ql': 0.6}, {'f_agg': 'var', 'isabs': False, 'qh': 0.6, 'ql': 0.6}, {'f_agg': 'mean', 'isabs': True, 'qh': 0.6, 'ql': 0.6}, {'f_agg': 'var', 'isabs': True, 'qh': 0.6, 'ql': 0.6}, {'f_agg': 'mean', 'isabs': False, 'qh': 0.8, 'ql': 0.6}, {'f_agg': 'var', 'isabs': False, 'qh': 0.8, 'ql': 0.6}, {'f_agg': 'mean', 'isabs': True, 'qh': 0.8, 'ql': 0.6}, {'f_agg': 'var', 'isabs': True, 'qh': 0.8, 'ql': 0.6}, {'f_agg': 'mean', 'isabs': False, 'qh': 1.0, 'ql': 0.6}, {'f_agg': 'var', 'isabs': False, 'qh': 1.0, 'ql': 0.6}, {'f_agg': 'mean', 'isabs': True, 'qh': 1.0, 'ql': 0.6}, {'f_agg': 'var', 'isabs': True, 'qh': 1.0, 'ql': 0.6}, {'f_agg': 'mean', 'isabs': False, 'qh': 0.2, 'ql': 0.8}, {'f_agg': 'var', 'isabs': False, 'qh': 0.2, 'ql': 0.8}, {'f_agg': 'mean', 'isabs': True, 'qh': 0.2, 'ql': 0.8}, {'f_agg': 'var', 'isabs': True, 'qh': 0.2, 'ql': 0.8}, {'f_agg': 'mean', 'isabs': False, 'qh': 0.4, 'ql': 0.8}, {'f_agg': 'var', 'isabs': False, 'qh': 0.4, 'ql': 0.8}, {'f_agg': 'mean', 'isabs': True, 'qh': 0.4, 'ql': 0.8}, {'f_agg': 'var', 'isabs': True, 'qh': 0.4, 'ql': 0.8}, {'f_agg': 'mean', 'isabs': False, 'qh': 0.6, 'ql': 0.8}, {'f_agg': 'var', 'isabs': False, 'qh': 0.6, 'ql': 0.8}, {'f_agg': 'mean', 'isabs': True, 'qh': 0.6, 'ql': 0.8}, {'f_agg': 'var', 'isabs': True, 'qh': 0.6, 'ql': 0.8}, {'f_agg': 'mean', 'isabs': False, 'qh': 0.8, 'ql': 0.8}, {'f_agg': 'var', 'isabs': False, 'qh': 0.8, 'ql': 0.8}, {'f_agg': 'mean', 'isabs': True, 'qh': 0.8, 'ql': 0.8}, {'f_agg': 'var', 'isabs': True, 'qh': 0.8, 'ql': 0.8}, {'f_agg': 'mean', 'isabs': False, 'qh': 1.0, 'ql': 0.8}, {'f_agg': 'var', 'isabs': False, 'qh': 1.0, 'ql': 0.8}, {'f_agg': 'mean', 'isabs': True, 'qh': 1.0, 'ql': 0.8}, {'f_agg': 'var', 'isabs': True, 'qh': 1.0, 'ql': 0.8}], 'count_above_mean': None, 'count_below_mean': None, 'cwt_coefficients': [{'coeff': 0, 'w': 2, 'widths': (2, 5, 10, 20)}, {'coeff': 0, 'w': 5, 'widths': (2, 5, 10, 20)}, {'coeff': 0, 'w': 10, 'widths': (2, 5, 10, 20)}, {'coeff': 0, 'w': 20, 'widths': (2, 5, 10, 20)}, {'coeff': 1, 'w': 2, 'widths': (2, 5, 10, 20)}, {'coeff': 1, 'w': 5, 'widths': (2, 5, 10, 20)}, {'coeff': 1, 'w': 10, 'widths': (2, 5, 10, 20)}, {'coeff': 1, 'w': 20, 'widths': (2, 5, 10, 20)}, {'coeff': 2, 'w': 2, 'widths': (2, 5, 10, 20)}, {'coeff': 2, 'w': 5, 'widths': (2, 5, 10, 20)}, {'coeff': 2, 'w': 10, 'widths': (2, 5, 10, 20)}, {'coeff': 2, 'w': 20, 'widths': (2, 5, 10, 20)}, {'coeff': 3, 'w': 2, 'widths': (2, 5, 10, 20)}, {'coeff': 3, 'w': 5, 'widths': (2, 5, 10, 20)}, {'coeff': 3, 'w': 10, 'widths': (2, 5, 10, 20)}, {'coeff': 3, 'w': 20, 'widths': (2, 5, 10, 20)}, {'coeff': 4, 'w': 2, 'widths': (2, 5, 10, 20)}, {'coeff': 4, 'w': 5, 'widths': (2, 5, 10, 20)}, {'coeff': 4, 'w': 10, 'widths': (2, 5, 10, 20)}, {'coeff': 4, 'w': 20, 'widths': (2, 5, 10, 20)}, {'coeff': 5, 'w': 2, 'widths': (2, 5, 10, 20)}, {'coeff': 5, 'w': 5, 'widths': (2, 5, 10, 20)}, {'coeff': 5, 'w': 10, 'widths': (2, 5, 10, 20)}, {'coeff': 5, 'w': 20, 'widths': (2, 5, 10, 20)}, {'coeff': 6, 'w': 2, 'widths': (2, 5, 10, 20)}, {'coeff': 6, 'w': 5, 'widths': (2, 5, 10, 20)}, {'coeff': 6, 'w': 10, 'widths': (2, 5, 10, 20)}, {'coeff': 6, 'w': 20, 'widths': (2, 5, 10, 20)}, {'coeff': 7, 'w': 2, 'widths': (2, 5, 10, 20)}, {'coeff': 7, 'w': 5, 'widths': (2, 5, 10, 20)}, {'coeff': 7, 'w': 10, 'widths': (2, 5, 10, 20)}, {'coeff': 7, 'w': 20, 'widths': (2, 5, 10, 20)}, {'coeff': 8, 'w': 2, 'widths': (2, 5, 10, 20)}, {'coeff': 8, 'w': 5, 'widths': (2, 5, 10, 20)}, {'coeff': 8, 'w': 10, 'widths': (2, 5, 10, 20)}, {'coeff': 8, 'w': 20, 'widths': (2, 5, 10, 20)}, {'coeff': 9, 'w': 2, 'widths': (2, 5, 10, 20)}, {'coeff': 9, 'w': 5, 'widths': (2, 5, 10, 20)}, {'coeff': 9, 'w': 10, 'widths': (2, 5, 10, 20)}, {'coeff': 9, 'w': 20, 'widths': (2, 5, 10, 20)}, {'coeff': 10, 'w': 2, 'widths': (2, 5, 10, 20)}, {'coeff': 10, 'w': 5, 'widths': (2, 5, 10, 20)}, {'coeff': 10, 'w': 10, 'widths': (2, 5, 10, 20)}, {'coeff': 10, 'w': 20, 'widths': (2, 5, 10, 20)}, {'coeff': 11, 'w': 2, 'widths': (2, 5, 10, 20)}, {'coeff': 11, 'w': 5, 'widths': (2, 5, 10, 20)}, {'coeff': 11, 'w': 10, 'widths': (2, 5, 10, 20)}, {'coeff': 11, 'w': 20, 'widths': (2, 5, 10, 20)}, {'coeff': 12, 'w': 2, 'widths': (2, 5, 10, 20)}, {'coeff': 12, 'w': 5, 'widths': (2, 5, 10, 20)}, {'coeff': 12, 'w': 10, 'widths': (2, 5, 10, 20)}, {'coeff': 12, 'w': 20, 'widths': (2, 5, 10, 20)}, {'coeff': 13, 'w': 2, 'widths': (2, 5, 10, 20)}, {'coeff': 13, 'w': 5, 'widths': (2, 5, 10, 20)}, {'coeff': 13, 'w': 10, 'widths': (2, 5, 10, 20)}, {'coeff': 13, 'w': 20, 'widths': (2, 5, 10, 20)}, {'coeff': 14, 'w': 2, 'widths': (2, 5, 10, 20)}, {'coeff': 14, 'w': 5, 'widths': (2, 5, 10, 20)}, {'coeff': 14, 'w': 10, 'widths': (2, 5, 10, 20)}, {'coeff': 14, 'w': 20, 'widths': (2, 5, 10, 20)}], 'fft_coefficient': [{'attr': 'real', 'coeff': 0}, {'attr': 'real', 'coeff': 1}, {'attr': 'real', 'coeff': 2}, {'attr': 'real', 'coeff': 3}, {'attr': 'real', 'coeff': 4}, {'attr': 'real', 'coeff': 5}, {'attr': 'real', 'coeff': 6}, {'attr': 'real', 'coeff': 7}, {'attr': 'real', 'coeff': 8}, {'attr': 'real', 'coeff': 9}, {'attr': 'real', 'coeff': 10}, {'attr': 'real', 'coeff': 11}, {'attr': 'real', 'coeff': 12}, {'attr': 'real', 'coeff': 13}, {'attr': 'real', 'coeff': 14}, {'attr': 'real', 'coeff': 15}, {'attr': 'real', 'coeff': 16}, {'attr': 'real', 'coeff': 17}, {'attr': 'real', 'coeff': 18}, {'attr': 'real', 'coeff': 19}, {'attr': 'real', 'coeff': 20}, {'attr': 'real', 'coeff': 21}, {'attr': 'real', 'coeff': 22}, {'attr': 'real', 'coeff': 23}, {'attr': 'real', 'coeff': 24}, {'attr': 'real', 'coeff': 25}, {'attr': 'real', 'coeff': 26}, {'attr': 'real', 'coeff': 27}, {'attr': 'real', 'coeff': 28}, {'attr': 'real', 'coeff': 29}, {'attr': 'real', 'coeff': 30}, {'attr': 'real', 'coeff': 31}, {'attr': 'real', 'coeff': 32}, {'attr': 'real', 'coeff': 33}, {'attr': 'real', 'coeff': 34}, {'attr': 'real', 'coeff': 35}, {'attr': 'real', 'coeff': 36}, {'attr': 'real', 'coeff': 37}, {'attr': 'real', 'coeff': 38}, {'attr': 'real', 'coeff': 39}, {'attr': 'real', 'coeff': 40}, {'attr': 'real', 'coeff': 41}, {'attr': 'real', 'coeff': 42}, {'attr': 'real', 'coeff': 43}, {'attr': 'real', 'coeff': 44}, {'attr': 'real', 'coeff': 45}, {'attr': 'real', 'coeff': 46}, {'attr': 'real', 'coeff': 47}, {'attr': 'real', 'coeff': 48}, {'attr': 'real', 'coeff': 49}, {'attr': 'real', 'coeff': 50}, {'attr': 'real', 'coeff': 51}, {'attr': 'real', 'coeff': 52}, {'attr': 'real', 'coeff': 53}, {'attr': 'real', 'coeff': 54}, {'attr': 'real', 'coeff': 55}, {'attr': 'real', 'coeff': 56}, {'attr': 'real', 'coeff': 57}, {'attr': 'real', 'coeff': 58}, {'attr': 'real', 'coeff': 59}, {'attr': 'real', 'coeff': 60}, {'attr': 'real', 'coeff': 61}, {'attr': 'real', 'coeff': 62}, {'attr': 'real', 'coeff': 63}, {'attr': 'real', 'coeff': 64}, {'attr': 'real', 'coeff': 65}, {'attr': 'real', 'coeff': 66}, {'attr': 'real', 'coeff': 67}, {'attr': 'real', 'coeff': 68}, {'attr': 'real', 'coeff': 69}, {'attr': 'real', 'coeff': 70}, {'attr': 'real', 'coeff': 71}, {'attr': 'real', 'coeff': 72}, {'attr': 'real', 'coeff': 73}, {'attr': 'real', 'coeff': 74}, {'attr': 'real', 'coeff': 75}, {'attr': 'real', 'coeff': 76}, {'attr': 'real', 'coeff': 77}, {'attr': 'real', 'coeff': 78}, {'attr': 'real', 'coeff': 79}, {'attr': 'real', 'coeff': 80}, {'attr': 'real', 'coeff': 81}, {'attr': 'real', 'coeff': 82}, {'attr': 'real', 'coeff': 83}, {'attr': 'real', 'coeff': 84}, {'attr': 'real', 'coeff': 85}, {'attr': 'real', 'coeff': 86}, {'attr': 'real', 'coeff': 87}, {'attr': 'real', 'coeff': 88}, {'attr': 'real', 'coeff': 89}, {'attr': 'real', 'coeff': 90}, {'attr': 'real', 'coeff': 91}, {'attr': 'real', 'coeff': 92}, {'attr': 'real', 'coeff': 93}, {'attr': 'real', 'coeff': 94}, {'attr': 'real', 'coeff': 95}, {'attr': 'real', 'coeff': 96}, {'attr': 'real', 'coeff': 97}, {'attr': 'real', 'coeff': 98}, {'attr': 'real', 'coeff': 99}, {'attr': 'imag', 'coeff': 0}, {'attr': 'imag', 'coeff': 1}, {'attr': 'imag', 'coeff': 2}, {'attr': 'imag', 'coeff': 3}, {'attr': 'imag', 'coeff': 4}, {'attr': 'imag', 'coeff': 5}, {'attr': 'imag', 'coeff': 6}, {'attr': 'imag', 'coeff': 7}, {'attr': 'imag', 'coeff': 8}, {'attr': 'imag', 'coeff': 9}, {'attr': 'imag', 'coeff': 10}, {'attr': 'imag', 'coeff': 11}, {'attr': 'imag', 'coeff': 12}, {'attr': 'imag', 'coeff': 13}, {'attr': 'imag', 'coeff': 14}, {'attr': 'imag', 'coeff': 15}, {'attr': 'imag', 'coeff': 16}, {'attr': 'imag', 'coeff': 17}, {'attr': 'imag', 'coeff': 18}, {'attr': 'imag', 'coeff': 19}, {'attr': 'imag', 'coeff': 20}, {'attr': 'imag', 'coeff': 21}, {'attr': 'imag', 'coeff': 22}, {'attr': 'imag', 'coeff': 23}, {'attr': 'imag', 'coeff': 24}, {'attr': 'imag', 'coeff': 25}, {'attr': 'imag', 'coeff': 26}, {'attr': 'imag', 'coeff': 27}, {'attr': 'imag', 'coeff': 28}, {'attr': 'imag', 'coeff': 29}, {'attr': 'imag', 'coeff': 30}, {'attr': 'imag', 'coeff': 31}, {'attr': 'imag', 'coeff': 32}, {'attr': 'imag', 'coeff': 33}, {'attr': 'imag', 'coeff': 34}, {'attr': 'imag', 'coeff': 35}, {'attr': 'imag', 'coeff': 36}, {'attr': 'imag', 'coeff': 37}, {'attr': 'imag', 'coeff': 38}, {'attr': 'imag', 'coeff': 39}, {'attr': 'imag', 'coeff': 40}, {'attr': 'imag', 'coeff': 41}, {'attr': 'imag', 'coeff': 42}, {'attr': 'imag', 'coeff': 43}, {'attr': 'imag', 'coeff': 44}, {'attr': 'imag', 'coeff': 45}, {'attr': 'imag', 'coeff': 46}, {'attr': 'imag', 'coeff': 47}, {'attr': 'imag', 'coeff': 48}, {'attr': 'imag', 'coeff': 49}, {'attr': 'imag', 'coeff': 50}, {'attr': 'imag', 'coeff': 51}, {'attr': 'imag', 'coeff': 52}, {'attr': 'imag', 'coeff': 53}, {'attr': 'imag', 'coeff': 54}, {'attr': 'imag', 'coeff': 55}, {'attr': 'imag', 'coeff': 56}, {'attr': 'imag', 'coeff': 57}, {'attr': 'imag', 'coeff': 58}, {'attr': 'imag', 'coeff': 59}, {'attr': 'imag', 'coeff': 60}, {'attr': 'imag', 'coeff': 61}, {'attr': 'imag', 'coeff': 62}, {'attr': 'imag', 'coeff': 63}, {'attr': 'imag', 'coeff': 64}, {'attr': 'imag', 'coeff': 65}, {'attr': 'imag', 'coeff': 66}, {'attr': 'imag', 'coeff': 67}, {'attr': 'imag', 'coeff': 68}, {'attr': 'imag', 'coeff': 69}, {'attr': 'imag', 'coeff': 70}, {'attr': 'imag', 'coeff': 71}, {'attr': 'imag', 'coeff': 72}, {'attr': 'imag', 'coeff': 73}, {'attr': 'imag', 'coeff': 74}, {'attr': 'imag', 'coeff': 75}, {'attr': 'imag', 'coeff': 76}, {'attr': 'imag', 'coeff': 77}, {'attr': 'imag', 'coeff': 78}, {'attr': 'imag', 'coeff': 79}, {'attr': 'imag', 'coeff': 80}, {'attr': 'imag', 'coeff': 81}, {'attr': 'imag', 'coeff': 82}, {'attr': 'imag', 'coeff': 83}, {'attr': 'imag', 'coeff': 84}, {'attr': 'imag', 'coeff': 85}, {'attr': 'imag', 'coeff': 86}, {'attr': 'imag', 'coeff': 87}, {'attr': 'imag', 'coeff': 88}, {'attr': 'imag', 'coeff': 89}, {'attr': 'imag', 'coeff': 90}, {'attr': 'imag', 'coeff': 91}, {'attr': 'imag', 'coeff': 92}, {'attr': 'imag', 'coeff': 93}, {'attr': 'imag', 'coeff': 94}, {'attr': 'imag', 'coeff': 95}, {'attr': 'imag', 'coeff': 96}, {'attr': 'imag', 'coeff': 97}, {'attr': 'imag', 'coeff': 98}, {'attr': 'imag', 'coeff': 99}], 'first_location_of_maximum': None, 'first_location_of_minimum': None, 'friedrich_coefficients': [{'coeff': 0, 'm': 3, 'r': 30}, {'coeff': 1, 'm': 3, 'r': 30}, {'coeff': 2, 'm': 3, 'r': 30}, {'coeff': 3, 'm': 3, 'r': 30}], 'has_duplicate': None, 'has_duplicate_max': None, 'has_duplicate_min': None, 'index_mass_quantile': [{'q': 0.1}, {'q': 0.2}, {'q': 0.3}, {'q': 0.4}, {'q': 0.6}, {'q': 0.7}, {'q': 0.8}, {'q': 0.9}], 'kurtosis': None, 'large_standard_deviation': [{'r': 0.05}, {'r': 0.1}, {'r': 0.15000000000000002}, {'r': 0.2}, {'r': 0.25}, {'r': 0.30000000000000004}, {'r': 0.35000000000000003}, {'r': 0.4}, {'r': 0.45}, {'r': 0.5}, {'r': 0.55}, {'r': 0.6000000000000001}, {'r': 0.65}, {'r': 0.7000000000000001}, {'r': 0.75}, {'r': 0.8}, {'r': 0.8500000000000001}, {'r': 0.9}, {'r': 0.9500000000000001}], 'last_location_of_maximum': None, 'last_location_of_minimum': None, 'length': None, 'linear_trend': [{'attr': 'pvalue'}, {'attr': 'rvalue'}, {'attr': 'intercept'}, {'attr': 'slope'}, {'attr': 'stderr'}], 'longest_strike_above_mean': None, 'longest_strike_below_mean': None, 'max_langevin_fixed_point': [{'m': 3, 'r': 30}], 'maximum': None, 'mean': None, 'mean_abs_change': None, 'mean_change': None, 'mean_second_derivate_central': None, 'median': None, 'minimum': None, 'number_crossing_m': [{'m': 0}, {'m': -1}, {'m': 1}], 'number_cwt_peaks': [{'n': 1}, {'n': 5}], 'number_peaks': [{'n': 1}, {'n': 3}, {'n': 5}, {'n': 10}, {'n': 50}], 'percentage_of_reoccurring_datapoints_to_all_datapoints': None, 'percentage_of_reoccurring_values_to_all_values': None, 'quantile': [{'q': 0.1}, {'q': 0.2}, {'q': 0.3}, {'q': 0.4}, {'q': 0.6}, {'q': 0.7}, {'q': 0.8}, {'q': 0.9}], 'range_count': [{'max': 1, 'min': -1}], 'ratio_value_number_to_time_series_length': None, 'skewness': None, 'spkt_welch_density': [{'coeff': 2}, {'coeff': 5}, {'coeff': 8}], 'standard_deviation': None, 'sum_of_reoccurring_data_points': None, 'sum_of_reoccurring_values': None, 'sum_values': None, 'symmetry_looking': [{'r': 0.0}, {'r': 0.05}, {'r': 0.1}, {'r': 0.15000000000000002}, {'r': 0.2}, {'r': 0.25}, {'r': 0.30000000000000004}, {'r': 0.35000000000000003}, {'r': 0.4}, {'r': 0.45}, {'r': 0.5}, {'r': 0.55}, {'r': 0.6000000000000001}, {'r': 0.65}, {'r': 0.7000000000000001}, {'r': 0.75}, {'r': 0.8}, {'r': 0.8500000000000001}, {'r': 0.9}, {'r': 0.9500000000000001}], 'time_reversal_asymmetry_statistic': [{'lag': 1}, {'lag': 2}, {'lag': 3}], 'value_count': [{'value': 0}, {'value': 1}, {'value': nan}, {'value': inf}, {'value': -inf}], 'variance': None, 'variance_larger_than_standard_deviation': None}
The ComprehensiveFCParameters
are the biggest set of features. It will take the longest to calculate
settings_comprehensive = ComprehensiveFCParameters()
settings_comprehensive
{'abs_energy': None, 'absolute_sum_of_changes': None, 'agg_autocorrelation': [{'f_agg': 'mean'}, {'f_agg': 'median'}, {'f_agg': 'var'}], 'agg_linear_trend': [{'attr': 'rvalue', 'chunk_len': 5, 'f_agg': 'max'}, {'attr': 'rvalue', 'chunk_len': 5, 'f_agg': 'min'}, {'attr': 'rvalue', 'chunk_len': 5, 'f_agg': 'mean'}, {'attr': 'rvalue', 'chunk_len': 5, 'f_agg': 'var'}, {'attr': 'rvalue', 'chunk_len': 10, 'f_agg': 'max'}, {'attr': 'rvalue', 'chunk_len': 10, 'f_agg': 'min'}, {'attr': 'rvalue', 'chunk_len': 10, 'f_agg': 'mean'}, {'attr': 'rvalue', 'chunk_len': 10, 'f_agg': 'var'}, {'attr': 'rvalue', 'chunk_len': 50, 'f_agg': 'max'}, {'attr': 'rvalue', 'chunk_len': 50, 'f_agg': 'min'}, {'attr': 'rvalue', 'chunk_len': 50, 'f_agg': 'mean'}, {'attr': 'rvalue', 'chunk_len': 50, 'f_agg': 'var'}, {'attr': 'intercept', 'chunk_len': 5, 'f_agg': 'max'}, {'attr': 'intercept', 'chunk_len': 5, 'f_agg': 'min'}, {'attr': 'intercept', 'chunk_len': 5, 'f_agg': 'mean'}, {'attr': 'intercept', 'chunk_len': 5, 'f_agg': 'var'}, {'attr': 'intercept', 'chunk_len': 10, 'f_agg': 'max'}, {'attr': 'intercept', 'chunk_len': 10, 'f_agg': 'min'}, {'attr': 'intercept', 'chunk_len': 10, 'f_agg': 'mean'}, {'attr': 'intercept', 'chunk_len': 10, 'f_agg': 'var'}, {'attr': 'intercept', 'chunk_len': 50, 'f_agg': 'max'}, {'attr': 'intercept', 'chunk_len': 50, 'f_agg': 'min'}, {'attr': 'intercept', 'chunk_len': 50, 'f_agg': 'mean'}, {'attr': 'intercept', 'chunk_len': 50, 'f_agg': 'var'}, {'attr': 'slope', 'chunk_len': 5, 'f_agg': 'max'}, {'attr': 'slope', 'chunk_len': 5, 'f_agg': 'min'}, {'attr': 'slope', 'chunk_len': 5, 'f_agg': 'mean'}, {'attr': 'slope', 'chunk_len': 5, 'f_agg': 'var'}, {'attr': 'slope', 'chunk_len': 10, 'f_agg': 'max'}, {'attr': 'slope', 'chunk_len': 10, 'f_agg': 'min'}, {'attr': 'slope', 'chunk_len': 10, 'f_agg': 'mean'}, {'attr': 'slope', 'chunk_len': 10, 'f_agg': 'var'}, {'attr': 'slope', 'chunk_len': 50, 'f_agg': 'max'}, {'attr': 'slope', 'chunk_len': 50, 'f_agg': 'min'}, {'attr': 'slope', 'chunk_len': 50, 'f_agg': 'mean'}, {'attr': 'slope', 'chunk_len': 50, 'f_agg': 'var'}, {'attr': 'stderr', 'chunk_len': 5, 'f_agg': 'max'}, {'attr': 'stderr', 'chunk_len': 5, 'f_agg': 'min'}, {'attr': 'stderr', 'chunk_len': 5, 'f_agg': 'mean'}, {'attr': 'stderr', 'chunk_len': 5, 'f_agg': 'var'}, {'attr': 'stderr', 'chunk_len': 10, 'f_agg': 'max'}, {'attr': 'stderr', 'chunk_len': 10, 'f_agg': 'min'}, {'attr': 'stderr', 'chunk_len': 10, 'f_agg': 'mean'}, {'attr': 'stderr', 'chunk_len': 10, 'f_agg': 'var'}, {'attr': 'stderr', 'chunk_len': 50, 'f_agg': 'max'}, {'attr': 'stderr', 'chunk_len': 50, 'f_agg': 'min'}, {'attr': 'stderr', 'chunk_len': 50, 'f_agg': 'mean'}, {'attr': 'stderr', 'chunk_len': 50, 'f_agg': 'var'}], 'approximate_entropy': [{'m': 2, 'r': 0.1}, {'m': 2, 'r': 0.3}, {'m': 2, 'r': 0.5}, {'m': 2, 'r': 0.7}, {'m': 2, 'r': 0.9}], 'ar_coefficient': [{'coeff': 0, 'k': 10}, {'coeff': 1, 'k': 10}, {'coeff': 2, 'k': 10}, {'coeff': 3, 'k': 10}, {'coeff': 4, 'k': 10}], 'augmented_dickey_fuller': [{'attr': 'teststat'}, {'attr': 'pvalue'}, {'attr': 'usedlag'}], 'autocorrelation': [{'lag': 0}, {'lag': 1}, {'lag': 2}, {'lag': 3}, {'lag': 4}, {'lag': 5}, {'lag': 6}, {'lag': 7}, {'lag': 8}, {'lag': 9}], 'binned_entropy': [{'max_bins': 10}], 'c3': [{'lag': 1}, {'lag': 2}, {'lag': 3}], 'change_quantiles': [{'f_agg': 'mean', 'isabs': False, 'qh': 0.2, 'ql': 0.0}, {'f_agg': 'var', 'isabs': False, 'qh': 0.2, 'ql': 0.0}, {'f_agg': 'mean', 'isabs': True, 'qh': 0.2, 'ql': 0.0}, {'f_agg': 'var', 'isabs': True, 'qh': 0.2, 'ql': 0.0}, {'f_agg': 'mean', 'isabs': False, 'qh': 0.4, 'ql': 0.0}, {'f_agg': 'var', 'isabs': False, 'qh': 0.4, 'ql': 0.0}, {'f_agg': 'mean', 'isabs': True, 'qh': 0.4, 'ql': 0.0}, {'f_agg': 'var', 'isabs': True, 'qh': 0.4, 'ql': 0.0}, {'f_agg': 'mean', 'isabs': False, 'qh': 0.6, 'ql': 0.0}, {'f_agg': 'var', 'isabs': False, 'qh': 0.6, 'ql': 0.0}, {'f_agg': 'mean', 'isabs': True, 'qh': 0.6, 'ql': 0.0}, {'f_agg': 'var', 'isabs': True, 'qh': 0.6, 'ql': 0.0}, {'f_agg': 'mean', 'isabs': False, 'qh': 0.8, 'ql': 0.0}, {'f_agg': 'var', 'isabs': False, 'qh': 0.8, 'ql': 0.0}, {'f_agg': 'mean', 'isabs': True, 'qh': 0.8, 'ql': 0.0}, {'f_agg': 'var', 'isabs': True, 'qh': 0.8, 'ql': 0.0}, {'f_agg': 'mean', 'isabs': False, 'qh': 1.0, 'ql': 0.0}, {'f_agg': 'var', 'isabs': False, 'qh': 1.0, 'ql': 0.0}, {'f_agg': 'mean', 'isabs': True, 'qh': 1.0, 'ql': 0.0}, {'f_agg': 'var', 'isabs': True, 'qh': 1.0, 'ql': 0.0}, {'f_agg': 'mean', 'isabs': False, 'qh': 0.2, 'ql': 0.2}, {'f_agg': 'var', 'isabs': False, 'qh': 0.2, 'ql': 0.2}, {'f_agg': 'mean', 'isabs': True, 'qh': 0.2, 'ql': 0.2}, {'f_agg': 'var', 'isabs': True, 'qh': 0.2, 'ql': 0.2}, {'f_agg': 'mean', 'isabs': False, 'qh': 0.4, 'ql': 0.2}, {'f_agg': 'var', 'isabs': False, 'qh': 0.4, 'ql': 0.2}, {'f_agg': 'mean', 'isabs': True, 'qh': 0.4, 'ql': 0.2}, {'f_agg': 'var', 'isabs': True, 'qh': 0.4, 'ql': 0.2}, {'f_agg': 'mean', 'isabs': False, 'qh': 0.6, 'ql': 0.2}, {'f_agg': 'var', 'isabs': False, 'qh': 0.6, 'ql': 0.2}, {'f_agg': 'mean', 'isabs': True, 'qh': 0.6, 'ql': 0.2}, {'f_agg': 'var', 'isabs': True, 'qh': 0.6, 'ql': 0.2}, {'f_agg': 'mean', 'isabs': False, 'qh': 0.8, 'ql': 0.2}, {'f_agg': 'var', 'isabs': False, 'qh': 0.8, 'ql': 0.2}, {'f_agg': 'mean', 'isabs': True, 'qh': 0.8, 'ql': 0.2}, {'f_agg': 'var', 'isabs': True, 'qh': 0.8, 'ql': 0.2}, {'f_agg': 'mean', 'isabs': False, 'qh': 1.0, 'ql': 0.2}, {'f_agg': 'var', 'isabs': False, 'qh': 1.0, 'ql': 0.2}, {'f_agg': 'mean', 'isabs': True, 'qh': 1.0, 'ql': 0.2}, {'f_agg': 'var', 'isabs': True, 'qh': 1.0, 'ql': 0.2}, {'f_agg': 'mean', 'isabs': False, 'qh': 0.2, 'ql': 0.4}, {'f_agg': 'var', 'isabs': False, 'qh': 0.2, 'ql': 0.4}, {'f_agg': 'mean', 'isabs': True, 'qh': 0.2, 'ql': 0.4}, {'f_agg': 'var', 'isabs': True, 'qh': 0.2, 'ql': 0.4}, {'f_agg': 'mean', 'isabs': False, 'qh': 0.4, 'ql': 0.4}, {'f_agg': 'var', 'isabs': False, 'qh': 0.4, 'ql': 0.4}, {'f_agg': 'mean', 'isabs': True, 'qh': 0.4, 'ql': 0.4}, {'f_agg': 'var', 'isabs': True, 'qh': 0.4, 'ql': 0.4}, {'f_agg': 'mean', 'isabs': False, 'qh': 0.6, 'ql': 0.4}, {'f_agg': 'var', 'isabs': False, 'qh': 0.6, 'ql': 0.4}, {'f_agg': 'mean', 'isabs': True, 'qh': 0.6, 'ql': 0.4}, {'f_agg': 'var', 'isabs': True, 'qh': 0.6, 'ql': 0.4}, {'f_agg': 'mean', 'isabs': False, 'qh': 0.8, 'ql': 0.4}, {'f_agg': 'var', 'isabs': False, 'qh': 0.8, 'ql': 0.4}, {'f_agg': 'mean', 'isabs': True, 'qh': 0.8, 'ql': 0.4}, {'f_agg': 'var', 'isabs': True, 'qh': 0.8, 'ql': 0.4}, {'f_agg': 'mean', 'isabs': False, 'qh': 1.0, 'ql': 0.4}, {'f_agg': 'var', 'isabs': False, 'qh': 1.0, 'ql': 0.4}, {'f_agg': 'mean', 'isabs': True, 'qh': 1.0, 'ql': 0.4}, {'f_agg': 'var', 'isabs': True, 'qh': 1.0, 'ql': 0.4}, {'f_agg': 'mean', 'isabs': False, 'qh': 0.2, 'ql': 0.6}, {'f_agg': 'var', 'isabs': False, 'qh': 0.2, 'ql': 0.6}, {'f_agg': 'mean', 'isabs': True, 'qh': 0.2, 'ql': 0.6}, {'f_agg': 'var', 'isabs': True, 'qh': 0.2, 'ql': 0.6}, {'f_agg': 'mean', 'isabs': False, 'qh': 0.4, 'ql': 0.6}, {'f_agg': 'var', 'isabs': False, 'qh': 0.4, 'ql': 0.6}, {'f_agg': 'mean', 'isabs': True, 'qh': 0.4, 'ql': 0.6}, {'f_agg': 'var', 'isabs': True, 'qh': 0.4, 'ql': 0.6}, {'f_agg': 'mean', 'isabs': False, 'qh': 0.6, 'ql': 0.6}, {'f_agg': 'var', 'isabs': False, 'qh': 0.6, 'ql': 0.6}, {'f_agg': 'mean', 'isabs': True, 'qh': 0.6, 'ql': 0.6}, {'f_agg': 'var', 'isabs': True, 'qh': 0.6, 'ql': 0.6}, {'f_agg': 'mean', 'isabs': False, 'qh': 0.8, 'ql': 0.6}, {'f_agg': 'var', 'isabs': False, 'qh': 0.8, 'ql': 0.6}, {'f_agg': 'mean', 'isabs': True, 'qh': 0.8, 'ql': 0.6}, {'f_agg': 'var', 'isabs': True, 'qh': 0.8, 'ql': 0.6}, {'f_agg': 'mean', 'isabs': False, 'qh': 1.0, 'ql': 0.6}, {'f_agg': 'var', 'isabs': False, 'qh': 1.0, 'ql': 0.6}, {'f_agg': 'mean', 'isabs': True, 'qh': 1.0, 'ql': 0.6}, {'f_agg': 'var', 'isabs': True, 'qh': 1.0, 'ql': 0.6}, {'f_agg': 'mean', 'isabs': False, 'qh': 0.2, 'ql': 0.8}, {'f_agg': 'var', 'isabs': False, 'qh': 0.2, 'ql': 0.8}, {'f_agg': 'mean', 'isabs': True, 'qh': 0.2, 'ql': 0.8}, {'f_agg': 'var', 'isabs': True, 'qh': 0.2, 'ql': 0.8}, {'f_agg': 'mean', 'isabs': False, 'qh': 0.4, 'ql': 0.8}, {'f_agg': 'var', 'isabs': False, 'qh': 0.4, 'ql': 0.8}, {'f_agg': 'mean', 'isabs': True, 'qh': 0.4, 'ql': 0.8}, {'f_agg': 'var', 'isabs': True, 'qh': 0.4, 'ql': 0.8}, {'f_agg': 'mean', 'isabs': False, 'qh': 0.6, 'ql': 0.8}, {'f_agg': 'var', 'isabs': False, 'qh': 0.6, 'ql': 0.8}, {'f_agg': 'mean', 'isabs': True, 'qh': 0.6, 'ql': 0.8}, {'f_agg': 'var', 'isabs': True, 'qh': 0.6, 'ql': 0.8}, {'f_agg': 'mean', 'isabs': False, 'qh': 0.8, 'ql': 0.8}, {'f_agg': 'var', 'isabs': False, 'qh': 0.8, 'ql': 0.8}, {'f_agg': 'mean', 'isabs': True, 'qh': 0.8, 'ql': 0.8}, {'f_agg': 'var', 'isabs': True, 'qh': 0.8, 'ql': 0.8}, {'f_agg': 'mean', 'isabs': False, 'qh': 1.0, 'ql': 0.8}, {'f_agg': 'var', 'isabs': False, 'qh': 1.0, 'ql': 0.8}, {'f_agg': 'mean', 'isabs': True, 'qh': 1.0, 'ql': 0.8}, {'f_agg': 'var', 'isabs': True, 'qh': 1.0, 'ql': 0.8}], 'count_above_mean': None, 'count_below_mean': None, 'cwt_coefficients': [{'coeff': 0, 'w': 2, 'widths': (2, 5, 10, 20)}, {'coeff': 0, 'w': 5, 'widths': (2, 5, 10, 20)}, {'coeff': 0, 'w': 10, 'widths': (2, 5, 10, 20)}, {'coeff': 0, 'w': 20, 'widths': (2, 5, 10, 20)}, {'coeff': 1, 'w': 2, 'widths': (2, 5, 10, 20)}, {'coeff': 1, 'w': 5, 'widths': (2, 5, 10, 20)}, {'coeff': 1, 'w': 10, 'widths': (2, 5, 10, 20)}, {'coeff': 1, 'w': 20, 'widths': (2, 5, 10, 20)}, {'coeff': 2, 'w': 2, 'widths': (2, 5, 10, 20)}, {'coeff': 2, 'w': 5, 'widths': (2, 5, 10, 20)}, {'coeff': 2, 'w': 10, 'widths': (2, 5, 10, 20)}, {'coeff': 2, 'w': 20, 'widths': (2, 5, 10, 20)}, {'coeff': 3, 'w': 2, 'widths': (2, 5, 10, 20)}, {'coeff': 3, 'w': 5, 'widths': (2, 5, 10, 20)}, {'coeff': 3, 'w': 10, 'widths': (2, 5, 10, 20)}, {'coeff': 3, 'w': 20, 'widths': (2, 5, 10, 20)}, {'coeff': 4, 'w': 2, 'widths': (2, 5, 10, 20)}, {'coeff': 4, 'w': 5, 'widths': (2, 5, 10, 20)}, {'coeff': 4, 'w': 10, 'widths': (2, 5, 10, 20)}, {'coeff': 4, 'w': 20, 'widths': (2, 5, 10, 20)}, {'coeff': 5, 'w': 2, 'widths': (2, 5, 10, 20)}, {'coeff': 5, 'w': 5, 'widths': (2, 5, 10, 20)}, {'coeff': 5, 'w': 10, 'widths': (2, 5, 10, 20)}, {'coeff': 5, 'w': 20, 'widths': (2, 5, 10, 20)}, {'coeff': 6, 'w': 2, 'widths': (2, 5, 10, 20)}, {'coeff': 6, 'w': 5, 'widths': (2, 5, 10, 20)}, {'coeff': 6, 'w': 10, 'widths': (2, 5, 10, 20)}, {'coeff': 6, 'w': 20, 'widths': (2, 5, 10, 20)}, {'coeff': 7, 'w': 2, 'widths': (2, 5, 10, 20)}, {'coeff': 7, 'w': 5, 'widths': (2, 5, 10, 20)}, {'coeff': 7, 'w': 10, 'widths': (2, 5, 10, 20)}, {'coeff': 7, 'w': 20, 'widths': (2, 5, 10, 20)}, {'coeff': 8, 'w': 2, 'widths': (2, 5, 10, 20)}, {'coeff': 8, 'w': 5, 'widths': (2, 5, 10, 20)}, {'coeff': 8, 'w': 10, 'widths': (2, 5, 10, 20)}, {'coeff': 8, 'w': 20, 'widths': (2, 5, 10, 20)}, {'coeff': 9, 'w': 2, 'widths': (2, 5, 10, 20)}, {'coeff': 9, 'w': 5, 'widths': (2, 5, 10, 20)}, {'coeff': 9, 'w': 10, 'widths': (2, 5, 10, 20)}, {'coeff': 9, 'w': 20, 'widths': (2, 5, 10, 20)}, {'coeff': 10, 'w': 2, 'widths': (2, 5, 10, 20)}, {'coeff': 10, 'w': 5, 'widths': (2, 5, 10, 20)}, {'coeff': 10, 'w': 10, 'widths': (2, 5, 10, 20)}, {'coeff': 10, 'w': 20, 'widths': (2, 5, 10, 20)}, {'coeff': 11, 'w': 2, 'widths': (2, 5, 10, 20)}, {'coeff': 11, 'w': 5, 'widths': (2, 5, 10, 20)}, {'coeff': 11, 'w': 10, 'widths': (2, 5, 10, 20)}, {'coeff': 11, 'w': 20, 'widths': (2, 5, 10, 20)}, {'coeff': 12, 'w': 2, 'widths': (2, 5, 10, 20)}, {'coeff': 12, 'w': 5, 'widths': (2, 5, 10, 20)}, {'coeff': 12, 'w': 10, 'widths': (2, 5, 10, 20)}, {'coeff': 12, 'w': 20, 'widths': (2, 5, 10, 20)}, {'coeff': 13, 'w': 2, 'widths': (2, 5, 10, 20)}, {'coeff': 13, 'w': 5, 'widths': (2, 5, 10, 20)}, {'coeff': 13, 'w': 10, 'widths': (2, 5, 10, 20)}, {'coeff': 13, 'w': 20, 'widths': (2, 5, 10, 20)}, {'coeff': 14, 'w': 2, 'widths': (2, 5, 10, 20)}, {'coeff': 14, 'w': 5, 'widths': (2, 5, 10, 20)}, {'coeff': 14, 'w': 10, 'widths': (2, 5, 10, 20)}, {'coeff': 14, 'w': 20, 'widths': (2, 5, 10, 20)}], 'fft_coefficient': [{'attr': 'real', 'coeff': 0}, {'attr': 'real', 'coeff': 1}, {'attr': 'real', 'coeff': 2}, {'attr': 'real', 'coeff': 3}, {'attr': 'real', 'coeff': 4}, {'attr': 'real', 'coeff': 5}, {'attr': 'real', 'coeff': 6}, {'attr': 'real', 'coeff': 7}, {'attr': 'real', 'coeff': 8}, {'attr': 'real', 'coeff': 9}, {'attr': 'real', 'coeff': 10}, {'attr': 'real', 'coeff': 11}, {'attr': 'real', 'coeff': 12}, {'attr': 'real', 'coeff': 13}, {'attr': 'real', 'coeff': 14}, {'attr': 'real', 'coeff': 15}, {'attr': 'real', 'coeff': 16}, {'attr': 'real', 'coeff': 17}, {'attr': 'real', 'coeff': 18}, {'attr': 'real', 'coeff': 19}, {'attr': 'real', 'coeff': 20}, {'attr': 'real', 'coeff': 21}, {'attr': 'real', 'coeff': 22}, {'attr': 'real', 'coeff': 23}, {'attr': 'real', 'coeff': 24}, {'attr': 'real', 'coeff': 25}, {'attr': 'real', 'coeff': 26}, {'attr': 'real', 'coeff': 27}, {'attr': 'real', 'coeff': 28}, {'attr': 'real', 'coeff': 29}, {'attr': 'real', 'coeff': 30}, {'attr': 'real', 'coeff': 31}, {'attr': 'real', 'coeff': 32}, {'attr': 'real', 'coeff': 33}, {'attr': 'real', 'coeff': 34}, {'attr': 'real', 'coeff': 35}, {'attr': 'real', 'coeff': 36}, {'attr': 'real', 'coeff': 37}, {'attr': 'real', 'coeff': 38}, {'attr': 'real', 'coeff': 39}, {'attr': 'real', 'coeff': 40}, {'attr': 'real', 'coeff': 41}, {'attr': 'real', 'coeff': 42}, {'attr': 'real', 'coeff': 43}, {'attr': 'real', 'coeff': 44}, {'attr': 'real', 'coeff': 45}, {'attr': 'real', 'coeff': 46}, {'attr': 'real', 'coeff': 47}, {'attr': 'real', 'coeff': 48}, {'attr': 'real', 'coeff': 49}, {'attr': 'real', 'coeff': 50}, {'attr': 'real', 'coeff': 51}, {'attr': 'real', 'coeff': 52}, {'attr': 'real', 'coeff': 53}, {'attr': 'real', 'coeff': 54}, {'attr': 'real', 'coeff': 55}, {'attr': 'real', 'coeff': 56}, {'attr': 'real', 'coeff': 57}, {'attr': 'real', 'coeff': 58}, {'attr': 'real', 'coeff': 59}, {'attr': 'real', 'coeff': 60}, {'attr': 'real', 'coeff': 61}, {'attr': 'real', 'coeff': 62}, {'attr': 'real', 'coeff': 63}, {'attr': 'real', 'coeff': 64}, {'attr': 'real', 'coeff': 65}, {'attr': 'real', 'coeff': 66}, {'attr': 'real', 'coeff': 67}, {'attr': 'real', 'coeff': 68}, {'attr': 'real', 'coeff': 69}, {'attr': 'real', 'coeff': 70}, {'attr': 'real', 'coeff': 71}, {'attr': 'real', 'coeff': 72}, {'attr': 'real', 'coeff': 73}, {'attr': 'real', 'coeff': 74}, {'attr': 'real', 'coeff': 75}, {'attr': 'real', 'coeff': 76}, {'attr': 'real', 'coeff': 77}, {'attr': 'real', 'coeff': 78}, {'attr': 'real', 'coeff': 79}, {'attr': 'real', 'coeff': 80}, {'attr': 'real', 'coeff': 81}, {'attr': 'real', 'coeff': 82}, {'attr': 'real', 'coeff': 83}, {'attr': 'real', 'coeff': 84}, {'attr': 'real', 'coeff': 85}, {'attr': 'real', 'coeff': 86}, {'attr': 'real', 'coeff': 87}, {'attr': 'real', 'coeff': 88}, {'attr': 'real', 'coeff': 89}, {'attr': 'real', 'coeff': 90}, {'attr': 'real', 'coeff': 91}, {'attr': 'real', 'coeff': 92}, {'attr': 'real', 'coeff': 93}, {'attr': 'real', 'coeff': 94}, {'attr': 'real', 'coeff': 95}, {'attr': 'real', 'coeff': 96}, {'attr': 'real', 'coeff': 97}, {'attr': 'real', 'coeff': 98}, {'attr': 'real', 'coeff': 99}, {'attr': 'imag', 'coeff': 0}, {'attr': 'imag', 'coeff': 1}, {'attr': 'imag', 'coeff': 2}, {'attr': 'imag', 'coeff': 3}, {'attr': 'imag', 'coeff': 4}, {'attr': 'imag', 'coeff': 5}, {'attr': 'imag', 'coeff': 6}, {'attr': 'imag', 'coeff': 7}, {'attr': 'imag', 'coeff': 8}, {'attr': 'imag', 'coeff': 9}, {'attr': 'imag', 'coeff': 10}, {'attr': 'imag', 'coeff': 11}, {'attr': 'imag', 'coeff': 12}, {'attr': 'imag', 'coeff': 13}, {'attr': 'imag', 'coeff': 14}, {'attr': 'imag', 'coeff': 15}, {'attr': 'imag', 'coeff': 16}, {'attr': 'imag', 'coeff': 17}, {'attr': 'imag', 'coeff': 18}, {'attr': 'imag', 'coeff': 19}, {'attr': 'imag', 'coeff': 20}, {'attr': 'imag', 'coeff': 21}, {'attr': 'imag', 'coeff': 22}, {'attr': 'imag', 'coeff': 23}, {'attr': 'imag', 'coeff': 24}, {'attr': 'imag', 'coeff': 25}, {'attr': 'imag', 'coeff': 26}, {'attr': 'imag', 'coeff': 27}, {'attr': 'imag', 'coeff': 28}, {'attr': 'imag', 'coeff': 29}, {'attr': 'imag', 'coeff': 30}, {'attr': 'imag', 'coeff': 31}, {'attr': 'imag', 'coeff': 32}, {'attr': 'imag', 'coeff': 33}, {'attr': 'imag', 'coeff': 34}, {'attr': 'imag', 'coeff': 35}, {'attr': 'imag', 'coeff': 36}, {'attr': 'imag', 'coeff': 37}, {'attr': 'imag', 'coeff': 38}, {'attr': 'imag', 'coeff': 39}, {'attr': 'imag', 'coeff': 40}, {'attr': 'imag', 'coeff': 41}, {'attr': 'imag', 'coeff': 42}, {'attr': 'imag', 'coeff': 43}, {'attr': 'imag', 'coeff': 44}, {'attr': 'imag', 'coeff': 45}, {'attr': 'imag', 'coeff': 46}, {'attr': 'imag', 'coeff': 47}, {'attr': 'imag', 'coeff': 48}, {'attr': 'imag', 'coeff': 49}, {'attr': 'imag', 'coeff': 50}, {'attr': 'imag', 'coeff': 51}, {'attr': 'imag', 'coeff': 52}, {'attr': 'imag', 'coeff': 53}, {'attr': 'imag', 'coeff': 54}, {'attr': 'imag', 'coeff': 55}, {'attr': 'imag', 'coeff': 56}, {'attr': 'imag', 'coeff': 57}, {'attr': 'imag', 'coeff': 58}, {'attr': 'imag', 'coeff': 59}, {'attr': 'imag', 'coeff': 60}, {'attr': 'imag', 'coeff': 61}, {'attr': 'imag', 'coeff': 62}, {'attr': 'imag', 'coeff': 63}, {'attr': 'imag', 'coeff': 64}, {'attr': 'imag', 'coeff': 65}, {'attr': 'imag', 'coeff': 66}, {'attr': 'imag', 'coeff': 67}, {'attr': 'imag', 'coeff': 68}, {'attr': 'imag', 'coeff': 69}, {'attr': 'imag', 'coeff': 70}, {'attr': 'imag', 'coeff': 71}, {'attr': 'imag', 'coeff': 72}, {'attr': 'imag', 'coeff': 73}, {'attr': 'imag', 'coeff': 74}, {'attr': 'imag', 'coeff': 75}, {'attr': 'imag', 'coeff': 76}, {'attr': 'imag', 'coeff': 77}, {'attr': 'imag', 'coeff': 78}, {'attr': 'imag', 'coeff': 79}, {'attr': 'imag', 'coeff': 80}, {'attr': 'imag', 'coeff': 81}, {'attr': 'imag', 'coeff': 82}, {'attr': 'imag', 'coeff': 83}, {'attr': 'imag', 'coeff': 84}, {'attr': 'imag', 'coeff': 85}, {'attr': 'imag', 'coeff': 86}, {'attr': 'imag', 'coeff': 87}, {'attr': 'imag', 'coeff': 88}, {'attr': 'imag', 'coeff': 89}, {'attr': 'imag', 'coeff': 90}, {'attr': 'imag', 'coeff': 91}, {'attr': 'imag', 'coeff': 92}, {'attr': 'imag', 'coeff': 93}, {'attr': 'imag', 'coeff': 94}, {'attr': 'imag', 'coeff': 95}, {'attr': 'imag', 'coeff': 96}, {'attr': 'imag', 'coeff': 97}, {'attr': 'imag', 'coeff': 98}, {'attr': 'imag', 'coeff': 99}], 'first_location_of_maximum': None, 'first_location_of_minimum': None, 'friedrich_coefficients': [{'coeff': 0, 'm': 3, 'r': 30}, {'coeff': 1, 'm': 3, 'r': 30}, {'coeff': 2, 'm': 3, 'r': 30}, {'coeff': 3, 'm': 3, 'r': 30}], 'has_duplicate': None, 'has_duplicate_max': None, 'has_duplicate_min': None, 'index_mass_quantile': [{'q': 0.1}, {'q': 0.2}, {'q': 0.3}, {'q': 0.4}, {'q': 0.6}, {'q': 0.7}, {'q': 0.8}, {'q': 0.9}], 'kurtosis': None, 'large_standard_deviation': [{'r': 0.05}, {'r': 0.1}, {'r': 0.15000000000000002}, {'r': 0.2}, {'r': 0.25}, {'r': 0.30000000000000004}, {'r': 0.35000000000000003}, {'r': 0.4}, {'r': 0.45}, {'r': 0.5}, {'r': 0.55}, {'r': 0.6000000000000001}, {'r': 0.65}, {'r': 0.7000000000000001}, {'r': 0.75}, {'r': 0.8}, {'r': 0.8500000000000001}, {'r': 0.9}, {'r': 0.9500000000000001}], 'last_location_of_maximum': None, 'last_location_of_minimum': None, 'length': None, 'linear_trend': [{'attr': 'pvalue'}, {'attr': 'rvalue'}, {'attr': 'intercept'}, {'attr': 'slope'}, {'attr': 'stderr'}], 'longest_strike_above_mean': None, 'longest_strike_below_mean': None, 'max_langevin_fixed_point': [{'m': 3, 'r': 30}], 'maximum': None, 'mean': None, 'mean_abs_change': None, 'mean_change': None, 'mean_second_derivate_central': None, 'median': None, 'minimum': None, 'number_crossing_m': [{'m': 0}, {'m': -1}, {'m': 1}], 'number_cwt_peaks': [{'n': 1}, {'n': 5}], 'number_peaks': [{'n': 1}, {'n': 3}, {'n': 5}, {'n': 10}, {'n': 50}], 'percentage_of_reoccurring_datapoints_to_all_datapoints': None, 'percentage_of_reoccurring_values_to_all_values': None, 'quantile': [{'q': 0.1}, {'q': 0.2}, {'q': 0.3}, {'q': 0.4}, {'q': 0.6}, {'q': 0.7}, {'q': 0.8}, {'q': 0.9}], 'range_count': [{'max': 1, 'min': -1}], 'ratio_value_number_to_time_series_length': None, 'sample_entropy': None, 'skewness': None, 'spkt_welch_density': [{'coeff': 2}, {'coeff': 5}, {'coeff': 8}], 'standard_deviation': None, 'sum_of_reoccurring_data_points': None, 'sum_of_reoccurring_values': None, 'sum_values': None, 'symmetry_looking': [{'r': 0.0}, {'r': 0.05}, {'r': 0.1}, {'r': 0.15000000000000002}, {'r': 0.2}, {'r': 0.25}, {'r': 0.30000000000000004}, {'r': 0.35000000000000003}, {'r': 0.4}, {'r': 0.45}, {'r': 0.5}, {'r': 0.55}, {'r': 0.6000000000000001}, {'r': 0.65}, {'r': 0.7000000000000001}, {'r': 0.75}, {'r': 0.8}, {'r': 0.8500000000000001}, {'r': 0.9}, {'r': 0.9500000000000001}], 'time_reversal_asymmetry_statistic': [{'lag': 1}, {'lag': 2}, {'lag': 3}], 'value_count': [{'value': 0}, {'value': 1}, {'value': nan}, {'value': inf}, {'value': -inf}], 'variance': None, 'variance_larger_than_standard_deviation': None}
You see those parameters as values in the fc_paramter dictionary? Those are the parameters of the feature extraction methods.
In detail, the value in a fc_parameters dicitonary can contain a list of dictionaries. Every dictionary in that list is one feature.
So, for example
settings_comprehensive['large_standard_deviation']
[{'r': 0.05}, {'r': 0.1}, {'r': 0.15000000000000002}, {'r': 0.2}, {'r': 0.25}, {'r': 0.30000000000000004}, {'r': 0.35000000000000003}, {'r': 0.4}, {'r': 0.45}, {'r': 0.5}, {'r': 0.55}, {'r': 0.6000000000000001}, {'r': 0.65}, {'r': 0.7000000000000001}, {'r': 0.75}, {'r': 0.8}, {'r': 0.8500000000000001}, {'r': 0.9}, {'r': 0.9500000000000001}]
would trigger the calculation of 20 different 'large_standard_deviation' features, one for r=0.05, for n=0.10 up to r=0.95. Lets just take them and extract some features
settings_value_count = {'large_standard_deviation': settings_comprehensive['large_standard_deviation']}
settings_value_count
{'large_standard_deviation': [{'r': 0.05}, {'r': 0.1}, {'r': 0.15000000000000002}, {'r': 0.2}, {'r': 0.25}, {'r': 0.30000000000000004}, {'r': 0.35000000000000003}, {'r': 0.4}, {'r': 0.45}, {'r': 0.5}, {'r': 0.55}, {'r': 0.6000000000000001}, {'r': 0.65}, {'r': 0.7000000000000001}, {'r': 0.75}, {'r': 0.8}, {'r': 0.8500000000000001}, {'r': 0.9}, {'r': 0.9500000000000001}]}
X_tsfresh = extract_features(df, column_id="id", default_fc_parameters=settings_value_count)
X_tsfresh.head()
Feature Extraction: 100%|██████████| 4/4 [00:00<00:00, 772.36it/s]
variable | pressure__large_standard_deviation__r_0.05 | pressure__large_standard_deviation__r_0.1 | pressure__large_standard_deviation__r_0.15 | pressure__large_standard_deviation__r_0.2 | pressure__large_standard_deviation__r_0.25 | pressure__large_standard_deviation__r_0.3 | pressure__large_standard_deviation__r_0.35 | pressure__large_standard_deviation__r_0.4 | pressure__large_standard_deviation__r_0.45 | pressure__large_standard_deviation__r_0.5 | ... | temperature__large_standard_deviation__r_0.5 | temperature__large_standard_deviation__r_0.55 | temperature__large_standard_deviation__r_0.6 | temperature__large_standard_deviation__r_0.65 | temperature__large_standard_deviation__r_0.7 | temperature__large_standard_deviation__r_0.75 | temperature__large_standard_deviation__r_0.8 | temperature__large_standard_deviation__r_0.85 | temperature__large_standard_deviation__r_0.9 | temperature__large_standard_deviation__r_0.95 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | |||||||||||||||||||||
a | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
b | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
2 rows × 38 columns
The nice thing is, we actually contain the parameters in the feature name, so it is possible to reconstruct how the feature was calculated.
from_columns(X_tsfresh)
{'pressure': {'large_standard_deviation': [{'r': 0.05}, {'r': 0.1}, {'r': 0.15}, {'r': 0.2}, {'r': 0.25}, {'r': 0.3}, {'r': 0.35}, {'r': 0.4}, {'r': 0.45}, {'r': 0.5}, {'r': 0.55}, {'r': 0.6}, {'r': 0.65}, {'r': 0.7}, {'r': 0.75}, {'r': 0.8}, {'r': 0.85}, {'r': 0.9}, {'r': 0.95}]}, 'temperature': {'large_standard_deviation': [{'r': 0.05}, {'r': 0.1}, {'r': 0.15}, {'r': 0.2}, {'r': 0.25}, {'r': 0.3}, {'r': 0.35}, {'r': 0.4}, {'r': 0.45}, {'r': 0.5}, {'r': 0.55}, {'r': 0.6}, {'r': 0.65}, {'r': 0.7}, {'r': 0.75}, {'r': 0.8}, {'r': 0.85}, {'r': 0.9}, {'r': 0.95}]}}
This means that you should never change a column name. Otherwise the information how it was calculated can get lost.