from IPython.core.display import display, HTML
display(HTML("<style>.container { width:80% !important; }</style>"))
import pandas as pd
import pprint
pd.options.display.float_format = '{:20,.4f}'.format
pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
pd.set_option('display.width', 1000)
pd.set_option('display.colheader_justify', 'center')
pd.set_option('display.precision', 3)
# open file
x_rates = pd.read_csv("euro-daily-hist_1999_2020.csv")
# strip brackets and trailing space from country names
# replace remaining space with underscore
# lower case all column names
x_rates.columns = x_rates.columns.str.replace("[","").str.replace("]","")
x_rates.columns = x_rates.columns.str.rstrip()
x_rates.columns = x_rates.columns.str.replace(" ","_")
x_rates.columns = x_rates.columns.str.lower()
# rename columns
x_rates.rename(columns={"period\\unit:":"date",
"chinese_yuan_renminbi":"chinese_yuan",
"uk_pound_sterling":"uk_pound"}, inplace=True)
# convert datetime
x_rates["date"] = pd.to_datetime(x_rates["date"])
# resort and reindex
x_rates.sort_values("date", inplace=True)
x_rates.reset_index(drop=True, inplace=True)
# convert hyphens in currency columns to NaN
import numpy as np
x_rates = x_rates.replace("-", np.nan)
# convert exchange rate values to float
x_rates.iloc[:,1:] = x_rates.iloc[:,1:].astype(float)
mini = x_rates.iloc[:5000]
display(mini.head(2))
display(mini.tail(2))
/var/folders/bz/5cj1tzbj5xn319rpqrw6gpmh0000gn/T/ipykernel_9008/758582820.py:17: FutureWarning: The default value of regex will change from True to False in a future version. In addition, single character regular expressions will *not* be treated as literal strings when regex=True. x_rates.columns = x_rates.columns.str.replace("[","").str.replace("]","")
date | australian_dollar | bulgarian_lev | brazilian_real | canadian_dollar | swiss_franc | chinese_yuan | cypriot_pound | czech_koruna | danish_krone | estonian_kroon | uk_pound | greek_drachma | hong_kong_dollar | croatian_kuna | hungarian_forint | indonesian_rupiah | israeli_shekel | indian_rupee | iceland_krona | japanese_yen | korean_won | lithuanian_litas | latvian_lats | maltese_lira | mexican_peso | malaysian_ringgit | norwegian_krone | new_zealand_dollar | philippine_peso | polish_zloty | romanian_leu | russian_rouble | swedish_krona | singapore_dollar | slovenian_tolar | slovak_koruna | thai_baht | turkish_lira | us_dollar | south_african_rand | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1999-01-04 | 1.9100 | NaN | NaN | 1.8004 | 1.6168 | NaN | 0.5823 | 35.1070 | 7.4501 | 15.6466 | 0.7111 | 327.1500 | 9.1332 | NaN | 251.4800 | 9,433.6100 | NaN | NaN | 81.4800 | 133.7300 | 1,398.5900 | 4.7170 | 0.6668 | 0.4432 | 11.6446 | 4.4798 | 8.8550 | 2.2229 | 45.5100 | 4.0712 | 1.3111 | 25.2875 | 9.4696 | 1.9554 | 189.0450 | 42.9910 | 42.6799 | 0.3723 | 1.1789 | 6.9358 |
1 | 1999-01-05 | 1.8944 | NaN | NaN | 1.7965 | 1.6123 | NaN | 0.5823 | 34.9170 | 7.4495 | 15.6466 | 0.7122 | 324.7000 | 9.1341 | NaN | 250.8000 | 9,314.5100 | NaN | NaN | 81.5300 | 130.9600 | 1,373.0100 | 4.7174 | 0.6657 | 0.4432 | 11.5960 | 4.4805 | 8.7745 | 2.2011 | 44.7450 | 4.0245 | 1.3168 | 26.5876 | 9.4025 | 1.9655 | 188.7750 | 42.8480 | 42.5048 | 0.3728 | 1.1790 | 6.7975 |
date | australian_dollar | bulgarian_lev | brazilian_real | canadian_dollar | swiss_franc | chinese_yuan | cypriot_pound | czech_koruna | danish_krone | estonian_kroon | uk_pound | greek_drachma | hong_kong_dollar | croatian_kuna | hungarian_forint | indonesian_rupiah | israeli_shekel | indian_rupee | iceland_krona | japanese_yen | korean_won | lithuanian_litas | latvian_lats | maltese_lira | mexican_peso | malaysian_ringgit | norwegian_krone | new_zealand_dollar | philippine_peso | polish_zloty | romanian_leu | russian_rouble | swedish_krona | singapore_dollar | slovenian_tolar | slovak_koruna | thai_baht | turkish_lira | us_dollar | south_african_rand | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4998 | 2018-04-13 | 1.5801 | 1.9558 | 4.1979 | 1.5482 | 1.1854 | 7.7363 | NaN | 25.3070 | 7.4467 | NaN | 0.8640 | NaN | 9.6687 | 7.4165 | 311.1300 | 16,939.5700 | 4.3316 | 80.3160 | 121.6000 | 132.6400 | 1,316.2600 | NaN | NaN | NaN | 22.3162 | 4.7714 | 9.5643 | 1.6703 | 63.9690 | 4.1763 | 4.6603 | 76.2186 | 10.3798 | 1.6158 | NaN | NaN | 38.3670 | 5.0411 | 1.2317 | 14.8457 |
4999 | 2018-04-16 | 1.5928 | 1.9558 | 4.2300 | 1.5596 | 1.1878 | 7.7726 | NaN | 25.2650 | 7.4473 | NaN | 0.8647 | NaN | 9.7104 | 7.4128 | 310.3000 | 17,039.9800 | 4.3327 | 81.0175 | 122.0000 | 132.7700 | 1,328.3300 | NaN | NaN | NaN | 22.3399 | 4.8057 | 9.5950 | 1.6853 | 64.3870 | 4.1627 | 4.6508 | 76.9420 | 10.4045 | 1.6221 | NaN | NaN | 38.6440 | 5.0816 | 1.2370 | 14.9467 |
# create a list of data frame names
# not sure this is neccessary but trying df = df_list.index(currency) in the framer function doesn't seem to work
# create a list of data frames for each currency with log rate of the exchange rate, 30 day rolling mean, and year
col_names = []
df_list = []
df_dict = {}
for column in mini.columns[1:]:
df_name = column
col_names.append(df_name)
df = mini[["date", column]].copy()
df = df[df[column].notna()]
df["log_rate"] = np.log(df.iloc[:,1]/df.iloc[:,1].shift()) # getting the log of the exchange rate # double check this is the correct way to get log
df["rolling_mean_30"] = df[column].rolling(30).mean()
df["year"] = df["date"].dt.year
# df_dict[column] = df
df_list.append(df)
# functions to build annual volatility given string of currency name
# function to assign dataframe to variable name
# i could include this in volatizer, but for now keep separate because these are frames of all the original data
def framer(currency):
index = col_names.index(currency)
df = df_list[index] # this is a dataframe containing a single currency and the columns built in cell 3
return df
# function to create df with year and annual volatility for every row # i think i could use aggregation here but don't know how
def volatizer(currency):
all_the_years = [currency[currency['year'] == y] for y in currency['year'].unique()] # list of dataframes for each year
c_name = currency.columns[1]
df_dict = {}
for frame in all_the_years:
year_name = frame.iat[0,4] # the year for each df, becomes the "year" cell for annual volatility df
annual_volatility = frame["log_rate"].std()*253**.5 # volatility measured by standard deviation * 253 trading days per year raised to the 0.5 power
df_dict[year_name] = annual_volatility
df = pd.DataFrame.from_dict(df_dict, orient="index", columns=[c_name+"_annual_vol"]) # indexing on year, not sure if this is cool
return df
brazilian_real = framer("brazilian_real")
br_vol = volatizer(brazilian_real)
# now i need to run this on all 40 df's and get a new df with all of them joined
# then build an hbar chart with the eight from above
# maybe two hbar charts for cell phones?
display(br_vol)
brazilian_real_annual_vol | |
---|---|
2000 | 0.2621 |
2001 | 0.2217 |
2002 | 0.3007 |
2003 | 0.2003 |
2004 | 0.1244 |
2005 | 0.1670 |
2006 | 0.1669 |
2007 | 0.1549 |
2008 | 0.3049 |
2009 | 0.1553 |
2010 | 0.1202 |
2011 | 0.1200 |
2012 | 0.1074 |
2013 | 0.1360 |
2014 | 0.1450 |
2015 | 0.2342 |
2016 | 0.1724 |
2017 | 0.1217 |
2018 | 0.1082 |
# use string of currency to get index position and assign it to variable name
index = col_names.index("chinese_yuan")
print(index)
chinese_yuan = df_list[5]
# function to create df for each year in currency df
def split_years(df):
return [df[df['year'] == y] for y in df['year'].unique()]
all_the_years = split_years(chinese_yuan)
# see if I can make split_years split and heads
# # determine annual volatility for euro to currency
# for frame in all_the_years:
# year_name = frame.iat[0,4]
# annual_volatility = frame["log_rate"].std()*253**.5 # volatility measured by standard deviation * 253 trading days per year
# print("The Euro to Chinese yuan volatility for", year_name, "is" ,annual_volatility)
5
display(all_the_years[0])
date | chinese_yuan | log_rate | rolling_mean_30 | year | |
---|---|---|---|---|---|
268 | 2000-01-13 | 8.5054 | NaN | NaN | 2000 |
269 | 2000-01-14 | 8.4632 | -0.0050 | NaN | 2000 |
270 | 2000-01-17 | 8.3548 | -0.0129 | NaN | 2000 |
271 | 2000-01-18 | 8.3540 | -0.0001 | NaN | 2000 |
272 | 2000-01-19 | 8.3639 | 0.0012 | NaN | 2000 |
273 | 2000-01-20 | 8.3507 | -0.0016 | NaN | 2000 |
274 | 2000-01-21 | 8.3573 | 0.0008 | NaN | 2000 |
275 | 2000-01-24 | 8.2993 | -0.0070 | NaN | 2000 |
276 | 2000-01-25 | 8.2836 | -0.0019 | NaN | 2000 |
277 | 2000-01-26 | 8.2927 | 0.0011 | NaN | 2000 |
278 | 2000-01-27 | 8.2571 | -0.0043 | NaN | 2000 |
279 | 2000-01-28 | 8.1512 | -0.0129 | NaN | 2000 |
280 | 2000-01-31 | 8.1040 | -0.0058 | NaN | 2000 |
281 | 2000-02-01 | 8.0370 | -0.0083 | NaN | 2000 |
282 | 2000-02-02 | 8.0428 | 0.0007 | NaN | 2000 |
283 | 2000-02-03 | 8.0684 | 0.0032 | NaN | 2000 |
284 | 2000-02-04 | 8.1404 | 0.0089 | NaN | 2000 |
285 | 2000-02-07 | 8.0841 | -0.0069 | NaN | 2000 |
286 | 2000-02-08 | 8.1967 | 0.0138 | NaN | 2000 |
287 | 2000-02-09 | 8.2224 | 0.0031 | NaN | 2000 |
288 | 2000-02-10 | 8.1677 | -0.0067 | NaN | 2000 |
289 | 2000-02-11 | 8.1123 | -0.0068 | NaN | 2000 |
290 | 2000-02-14 | 8.1669 | 0.0067 | NaN | 2000 |
291 | 2000-02-15 | 8.0933 | -0.0091 | NaN | 2000 |
292 | 2000-02-16 | 8.1148 | 0.0027 | NaN | 2000 |
293 | 2000-02-17 | 8.2100 | 0.0117 | NaN | 2000 |
294 | 2000-02-18 | 8.1586 | -0.0063 | NaN | 2000 |
295 | 2000-02-21 | 8.1586 | 0.0000 | NaN | 2000 |
296 | 2000-02-22 | 8.2952 | 0.0166 | NaN | 2000 |
297 | 2000-02-23 | 8.3333 | 0.0046 | 8.2247 | 2000 |
298 | 2000-02-24 | 8.1926 | -0.0170 | 8.2142 | 2000 |
299 | 2000-02-25 | 8.1222 | -0.0086 | 8.2029 | 2000 |
300 | 2000-02-28 | 7.9782 | -0.0179 | 8.1903 | 2000 |
301 | 2000-02-29 | 8.0403 | 0.0078 | 8.1799 | 2000 |
302 | 2000-03-01 | 8.0014 | -0.0048 | 8.1678 | 2000 |
303 | 2000-03-02 | 8.0494 | 0.0060 | 8.1577 | 2000 |
304 | 2000-03-03 | 7.9948 | -0.0068 | 8.1456 | 2000 |
305 | 2000-03-06 | 7.9790 | -0.0020 | 8.1350 | 2000 |
306 | 2000-03-07 | 7.9401 | -0.0049 | 8.1235 | 2000 |
307 | 2000-03-08 | 7.8987 | -0.0052 | 8.1104 | 2000 |
308 | 2000-03-09 | 7.9592 | 0.0076 | 8.1005 | 2000 |
309 | 2000-03-10 | 7.9567 | -0.0003 | 8.0940 | 2000 |
310 | 2000-03-13 | 8.0419 | 0.0107 | 8.0919 | 2000 |
311 | 2000-03-14 | 7.9625 | -0.0099 | 8.0894 | 2000 |
312 | 2000-03-15 | 7.9848 | 0.0028 | 8.0875 | 2000 |
313 | 2000-03-16 | 7.9981 | 0.0017 | 8.0851 | 2000 |
314 | 2000-03-17 | 8.0055 | 0.0009 | 8.0806 | 2000 |
315 | 2000-03-20 | 8.0411 | 0.0044 | 8.0792 | 2000 |
316 | 2000-03-21 | 8.0295 | -0.0014 | 8.0736 | 2000 |
317 | 2000-03-22 | 7.9484 | -0.0102 | 8.0645 | 2000 |
318 | 2000-03-23 | 7.9923 | 0.0055 | 8.0587 | 2000 |
319 | 2000-03-24 | 8.0411 | 0.0061 | 8.0563 | 2000 |
320 | 2000-03-27 | 8.0386 | -0.0003 | 8.0520 | 2000 |
321 | 2000-03-28 | 7.9848 | -0.0067 | 8.0484 | 2000 |
322 | 2000-03-29 | 7.9194 | -0.0082 | 8.0419 | 2000 |
323 | 2000-03-30 | 7.9087 | -0.0014 | 8.0318 | 2000 |
324 | 2000-03-31 | 7.9070 | -0.0002 | 8.0234 | 2000 |
325 | 2000-04-03 | 7.9161 | 0.0012 | 8.0154 | 2000 |
326 | 2000-04-04 | 7.8946 | -0.0027 | 8.0020 | 2000 |
327 | 2000-04-05 | 8.0063 | 0.0140 | 7.9911 | 2000 |
328 | 2000-04-06 | 7.9666 | -0.0050 | 7.9836 | 2000 |
329 | 2000-04-07 | 7.9161 | -0.0064 | 7.9767 | 2000 |
330 | 2000-04-10 | 7.9376 | 0.0027 | 7.9754 | 2000 |
331 | 2000-04-11 | 7.9410 | 0.0004 | 7.9720 | 2000 |
332 | 2000-04-12 | 7.9261 | -0.0019 | 7.9695 | 2000 |
333 | 2000-04-13 | 7.8938 | -0.0041 | 7.9643 | 2000 |
334 | 2000-04-14 | 7.8963 | 0.0003 | 7.9611 | 2000 |
335 | 2000-04-17 | 7.9236 | 0.0035 | 7.9592 | 2000 |
336 | 2000-04-18 | 7.8607 | -0.0080 | 7.9566 | 2000 |
337 | 2000-04-19 | 7.8309 | -0.0038 | 7.9543 | 2000 |
338 | 2000-04-20 | 7.7605 | -0.0090 | 7.9477 | 2000 |
341 | 2000-04-25 | 7.6993 | -0.0079 | 7.9391 | 2000 |
342 | 2000-04-26 | 7.6090 | -0.0118 | 7.9247 | 2000 |
343 | 2000-04-27 | 7.5842 | -0.0033 | 7.9121 | 2000 |
344 | 2000-04-28 | 7.5197 | -0.0085 | 7.8966 | 2000 |
346 | 2000-05-02 | 7.5453 | 0.0034 | 7.8815 | 2000 |
347 | 2000-05-03 | 7.3773 | -0.0225 | 7.8605 | 2000 |
348 | 2000-05-04 | 7.4054 | 0.0038 | 7.8393 | 2000 |
349 | 2000-05-05 | 7.4361 | 0.0041 | 7.8196 | 2000 |
350 | 2000-05-08 | 7.4096 | -0.0036 | 7.8016 | 2000 |
351 | 2000-05-09 | 7.4311 | 0.0029 | 7.7829 | 2000 |
352 | 2000-05-10 | 7.5379 | 0.0143 | 7.7661 | 2000 |
353 | 2000-05-11 | 7.5147 | -0.0031 | 7.7487 | 2000 |
354 | 2000-05-12 | 7.4733 | -0.0055 | 7.7316 | 2000 |
355 | 2000-05-15 | 7.5710 | 0.0130 | 7.7200 | 2000 |
356 | 2000-05-16 | 7.5031 | -0.0090 | 7.7065 | 2000 |
357 | 2000-05-17 | 7.3847 | -0.0159 | 7.6891 | 2000 |
358 | 2000-05-18 | 7.4013 | 0.0022 | 7.6719 | 2000 |
359 | 2000-05-19 | 7.3458 | -0.0075 | 7.6536 | 2000 |
360 | 2000-05-22 | 7.4493 | 0.0140 | 7.6350 | 2000 |
361 | 2000-05-23 | 7.5412 | 0.0123 | 7.6209 | 2000 |
362 | 2000-05-24 | 7.5304 | -0.0014 | 7.6080 | 2000 |
363 | 2000-05-25 | 7.4336 | -0.0129 | 7.5912 | 2000 |
364 | 2000-05-26 | 7.5677 | 0.0179 | 7.5788 | 2000 |
365 | 2000-05-29 | 7.6662 | 0.0129 | 7.5701 | 2000 |
366 | 2000-05-30 | 7.7464 | 0.0104 | 7.5652 | 2000 |
367 | 2000-05-31 | 7.7001 | -0.0060 | 7.5586 | 2000 |
368 | 2000-06-01 | 7.7224 | 0.0029 | 7.5519 | 2000 |
369 | 2000-06-02 | 7.7431 | 0.0027 | 7.5480 | 2000 |
370 | 2000-06-05 | 7.8077 | 0.0083 | 7.5472 | 2000 |
371 | 2000-06-06 | 7.8507 | 0.0055 | 7.5503 | 2000 |
372 | 2000-06-07 | 7.9078 | 0.0072 | 7.5572 | 2000 |
373 | 2000-06-08 | 8.0022 | 0.0119 | 7.5703 | 2000 |
374 | 2000-06-09 | 7.8549 | -0.0186 | 7.5793 | 2000 |
375 | 2000-06-12 | 7.8855 | 0.0039 | 7.5915 | 2000 |
376 | 2000-06-13 | 7.9318 | 0.0059 | 7.6044 | 2000 |
377 | 2000-06-14 | 7.9757 | 0.0055 | 7.6244 | 2000 |
378 | 2000-06-15 | 7.8830 | -0.0117 | 7.6403 | 2000 |
379 | 2000-06-16 | 7.9170 | 0.0043 | 7.6563 | 2000 |
380 | 2000-06-19 | 7.9790 | 0.0078 | 7.6753 | 2000 |
381 | 2000-06-20 | 7.8946 | -0.0106 | 7.6907 | 2000 |
382 | 2000-06-21 | 7.8383 | -0.0072 | 7.7008 | 2000 |
383 | 2000-06-22 | 7.7845 | -0.0069 | 7.7097 | 2000 |
384 | 2000-06-23 | 7.7911 | 0.0008 | 7.7203 | 2000 |
385 | 2000-06-26 | 7.7200 | -0.0092 | 7.7253 | 2000 |
386 | 2000-06-27 | 7.7812 | 0.0079 | 7.7346 | 2000 |
387 | 2000-06-28 | 7.7928 | 0.0015 | 7.7482 | 2000 |
388 | 2000-06-29 | 7.8665 | 0.0094 | 7.7637 | 2000 |
389 | 2000-06-30 | 7.9095 | 0.0055 | 7.7825 | 2000 |
390 | 2000-07-03 | 7.8574 | -0.0066 | 7.7961 | 2000 |
391 | 2000-07-04 | 7.8524 | -0.0006 | 7.8065 | 2000 |
392 | 2000-07-05 | 7.8938 | 0.0053 | 7.8186 | 2000 |
393 | 2000-07-06 | 7.8979 | 0.0005 | 7.8340 | 2000 |
394 | 2000-07-07 | 7.8491 | -0.0062 | 7.8434 | 2000 |
395 | 2000-07-10 | 7.8822 | 0.0042 | 7.8506 | 2000 |
396 | 2000-07-11 | 7.8855 | 0.0004 | 7.8553 | 2000 |
397 | 2000-07-12 | 7.8623 | -0.0029 | 7.8607 | 2000 |
398 | 2000-07-13 | 7.7382 | -0.0159 | 7.8612 | 2000 |
399 | 2000-07-14 | 7.7340 | -0.0005 | 7.8609 | 2000 |
400 | 2000-07-17 | 7.7407 | 0.0009 | 7.8587 | 2000 |
401 | 2000-07-18 | 7.7415 | 0.0001 | 7.8550 | 2000 |
402 | 2000-07-19 | 7.6281 | -0.0148 | 7.8457 | 2000 |
403 | 2000-07-20 | 7.6314 | 0.0004 | 7.8333 | 2000 |
404 | 2000-07-21 | 7.7498 | 0.0154 | 7.8298 | 2000 |
405 | 2000-07-24 | 7.7241 | -0.0033 | 7.8244 | 2000 |
406 | 2000-07-25 | 7.7887 | 0.0083 | 7.8197 | 2000 |
407 | 2000-07-26 | 7.7721 | -0.0021 | 7.8129 | 2000 |
408 | 2000-07-27 | 7.7713 | -0.0001 | 7.8092 | 2000 |
409 | 2000-07-28 | 7.6777 | -0.0121 | 7.8012 | 2000 |
410 | 2000-07-31 | 7.6504 | -0.0036 | 7.7902 | 2000 |
411 | 2000-08-01 | 7.6678 | 0.0023 | 7.7827 | 2000 |
412 | 2000-08-02 | 7.5668 | -0.0133 | 7.7736 | 2000 |
413 | 2000-08-03 | 7.4725 | -0.0125 | 7.7632 | 2000 |
414 | 2000-08-04 | 7.4750 | 0.0003 | 7.7527 | 2000 |
415 | 2000-08-07 | 7.5188 | 0.0058 | 7.7460 | 2000 |
416 | 2000-08-08 | 7.4882 | -0.0041 | 7.7362 | 2000 |
417 | 2000-08-09 | 7.4270 | -0.0082 | 7.7240 | 2000 |
418 | 2000-08-10 | 7.4750 | 0.0064 | 7.7110 | 2000 |
419 | 2000-08-11 | 7.5586 | 0.0111 | 7.6993 | 2000 |
420 | 2000-08-14 | 7.4584 | -0.0133 | 7.6860 | 2000 |
421 | 2000-08-15 | 7.5470 | 0.0118 | 7.6758 | 2000 |
422 | 2000-08-16 | 7.5089 | -0.0051 | 7.6630 | 2000 |
423 | 2000-08-17 | 7.5652 | 0.0075 | 7.6519 | 2000 |
424 | 2000-08-18 | 7.5544 | -0.0014 | 7.6421 | 2000 |
425 | 2000-08-21 | 7.4683 | -0.0115 | 7.6283 | 2000 |
426 | 2000-08-22 | 7.4261 | -0.0057 | 7.6129 | 2000 |
427 | 2000-08-23 | 7.3814 | -0.0060 | 7.5969 | 2000 |
428 | 2000-08-24 | 7.4592 | 0.0105 | 7.5876 | 2000 |
429 | 2000-08-25 | 7.4667 | 0.0010 | 7.5787 | 2000 |
430 | 2000-08-28 | 7.4551 | -0.0016 | 7.5692 | 2000 |
431 | 2000-08-29 | 7.4203 | -0.0047 | 7.5585 | 2000 |
432 | 2000-08-30 | 7.3740 | -0.0063 | 7.5500 | 2000 |
433 | 2000-08-31 | 7.3715 | -0.0003 | 7.5413 | 2000 |
434 | 2000-09-01 | 7.3682 | -0.0004 | 7.5286 | 2000 |
435 | 2000-09-04 | 7.4493 | 0.0109 | 7.5195 | 2000 |
436 | 2000-09-05 | 7.3549 | -0.0128 | 7.5050 | 2000 |
437 | 2000-09-06 | 7.2987 | -0.0077 | 7.4892 | 2000 |
438 | 2000-09-07 | 7.1811 | -0.0162 | 7.4695 | 2000 |
439 | 2000-09-08 | 7.2300 | 0.0068 | 7.4546 | 2000 |
440 | 2000-09-11 | 7.1257 | -0.0145 | 7.4371 | 2000 |
441 | 2000-09-12 | 7.1298 | 0.0006 | 7.4192 | 2000 |
442 | 2000-09-13 | 7.1629 | 0.0046 | 7.4057 | 2000 |
443 | 2000-09-14 | 7.1952 | 0.0045 | 7.3965 | 2000 |
444 | 2000-09-15 | 7.1306 | -0.0090 | 7.3850 | 2000 |
445 | 2000-09-18 | 7.0570 | -0.0104 | 7.3696 | 2000 |
446 | 2000-09-19 | 7.0694 | 0.0018 | 7.3557 | 2000 |
447 | 2000-09-20 | 7.0156 | -0.0076 | 7.3419 | 2000 |
448 | 2000-09-21 | 7.0553 | 0.0056 | 7.3280 | 2000 |
449 | 2000-09-22 | 7.3583 | 0.0420 | 7.3213 | 2000 |
450 | 2000-09-25 | 7.2589 | -0.0136 | 7.3146 | 2000 |
451 | 2000-09-26 | 7.2482 | -0.0015 | 7.3047 | 2000 |
452 | 2000-09-27 | 7.3342 | 0.0118 | 7.2989 | 2000 |
453 | 2000-09-28 | 7.3102 | -0.0033 | 7.2904 | 2000 |
454 | 2000-09-29 | 7.2548 | -0.0076 | 7.2804 | 2000 |
455 | 2000-10-02 | 7.2854 | 0.0042 | 7.2743 | 2000 |
456 | 2000-10-03 | 7.2531 | -0.0044 | 7.2685 | 2000 |
457 | 2000-10-04 | 7.2258 | -0.0038 | 7.2633 | 2000 |
458 | 2000-10-05 | 7.2722 | 0.0064 | 7.2571 | 2000 |
459 | 2000-10-06 | 7.2035 | -0.0095 | 7.2483 | 2000 |
460 | 2000-10-09 | 7.1969 | -0.0009 | 7.2397 | 2000 |
461 | 2000-10-10 | 7.2184 | 0.0030 | 7.2330 | 2000 |
462 | 2000-10-11 | 7.2175 | -0.0001 | 7.2278 | 2000 |
463 | 2000-10-12 | 7.1579 | -0.0083 | 7.2206 | 2000 |
464 | 2000-10-13 | 7.1406 | -0.0024 | 7.2130 | 2000 |
465 | 2000-10-16 | 7.0446 | -0.0135 | 7.1996 | 2000 |
466 | 2000-10-17 | 7.0321 | -0.0018 | 7.1888 | 2000 |
467 | 2000-10-18 | 7.0561 | 0.0034 | 7.1807 | 2000 |
468 | 2000-10-19 | 6.9618 | -0.0135 | 7.1734 | 2000 |
469 | 2000-10-20 | 6.9957 | 0.0049 | 7.1656 | 2000 |
470 | 2000-10-23 | 6.9336 | -0.0089 | 7.1592 | 2000 |
471 | 2000-10-24 | 6.9411 | 0.0011 | 7.1529 | 2000 |
472 | 2000-10-25 | 6.8757 | -0.0095 | 7.1433 | 2000 |
473 | 2000-10-26 | 6.8302 | -0.0066 | 7.1312 | 2000 |
474 | 2000-10-27 | 6.8898 | 0.0087 | 7.1231 | 2000 |
475 | 2000-10-30 | 7.0206 | 0.0188 | 7.1219 | 2000 |
476 | 2000-10-31 | 6.9668 | -0.0077 | 7.1185 | 2000 |
477 | 2000-11-01 | 7.0801 | 0.0161 | 7.1206 | 2000 |
478 | 2000-11-02 | 7.1563 | 0.0107 | 7.1240 | 2000 |
479 | 2000-11-03 | 7.2258 | 0.0097 | 7.1196 | 2000 |
480 | 2000-11-06 | 7.1737 | -0.0072 | 7.1168 | 2000 |
481 | 2000-11-07 | 7.1075 | -0.0093 | 7.1121 | 2000 |
482 | 2000-11-08 | 7.0843 | -0.0033 | 7.1037 | 2000 |
483 | 2000-11-09 | 7.0611 | -0.0033 | 7.0954 | 2000 |
484 | 2000-11-10 | 7.1786 | 0.0165 | 7.0929 | 2000 |
485 | 2000-11-13 | 7.1348 | -0.0061 | 7.0879 | 2000 |
486 | 2000-11-14 | 7.1041 | -0.0043 | 7.0829 | 2000 |
487 | 2000-11-15 | 7.1149 | 0.0015 | 7.0792 | 2000 |
488 | 2000-11-16 | 7.0926 | -0.0031 | 7.0732 | 2000 |
489 | 2000-11-17 | 7.0644 | -0.0040 | 7.0686 | 2000 |
490 | 2000-11-20 | 7.0255 | -0.0055 | 7.0629 | 2000 |
491 | 2000-11-21 | 7.0139 | -0.0017 | 7.0561 | 2000 |
492 | 2000-11-22 | 6.9767 | -0.0053 | 7.0480 | 2000 |
493 | 2000-11-23 | 6.9750 | -0.0002 | 7.0419 | 2000 |
494 | 2000-11-24 | 6.9825 | 0.0011 | 7.0367 | 2000 |
495 | 2000-11-27 | 6.9576 | -0.0036 | 7.0338 | 2000 |
496 | 2000-11-28 | 7.0859 | 0.0183 | 7.0356 | 2000 |
497 | 2000-11-29 | 7.1596 | 0.0103 | 7.0390 | 2000 |
498 | 2000-11-30 | 7.1877 | 0.0039 | 7.0465 | 2000 |
499 | 2000-12-01 | 7.2300 | 0.0059 | 7.0543 | 2000 |
500 | 2000-12-04 | 7.3732 | 0.0196 | 7.0690 | 2000 |
501 | 2000-12-05 | 7.2920 | -0.0111 | 7.0807 | 2000 |
502 | 2000-12-06 | 7.3069 | 0.0020 | 7.0951 | 2000 |
503 | 2000-12-07 | 7.4021 | 0.0129 | 7.1141 | 2000 |
504 | 2000-12-08 | 7.3624 | -0.0054 | 7.1299 | 2000 |
505 | 2000-12-11 | 7.2871 | -0.0103 | 7.1388 | 2000 |
506 | 2000-12-12 | 7.2689 | -0.0025 | 7.1488 | 2000 |
507 | 2000-12-13 | 7.2407 | -0.0039 | 7.1542 | 2000 |
508 | 2000-12-14 | 7.3160 | 0.0103 | 7.1595 | 2000 |
509 | 2000-12-15 | 7.4361 | 0.0163 | 7.1665 | 2000 |
510 | 2000-12-18 | 7.4212 | -0.0020 | 7.1748 | 2000 |
511 | 2000-12-19 | 7.3690 | -0.0071 | 7.1835 | 2000 |
512 | 2000-12-20 | 7.4981 | 0.0174 | 7.1973 | 2000 |
513 | 2000-12-21 | 7.5701 | 0.0096 | 7.2143 | 2000 |
514 | 2000-12-22 | 7.6479 | 0.0102 | 7.2299 | 2000 |
517 | 2000-12-27 | 7.7059 | 0.0076 | 7.2489 | 2000 |
518 | 2000-12-28 | 7.6852 | -0.0027 | 7.2683 | 2000 |
519 | 2000-12-29 | 7.7017 | 0.0021 | 7.2879 | 2000 |