import cartopy
import matplotlib.pyplot as plt
%matplotlib inline
import matplotlib
matplotlib.rcParams['savefig.dpi'] = 300
import cartopy.crs as ccrs
import numpy as np
from matplotlib import mlab
from goodies import as_table
import netCDF4
dataset = netCDF4.Dataset('../data/maps/avhrr-only-v2.20140101.nc')
lon = dataset.variables['lon'][:]
lat = dataset.variables['lat'][:]
temp = dataset.variables['sst'][:].squeeze()
ax = plt.axes()
ax.contourf(lon, lat, temp, 100)
<matplotlib.contour.QuadContourSet instance at 0x10d619ea8>
ax = plt.axes(projection=ccrs.Mercator())
ax.coastlines()
ax.add_feature(cartopy.feature.BORDERS)
ax.set_global()
ax.contourf(lon, lat, temp, 20, transform=ccrs.PlateCarree())
<matplotlib.contour.QuadContourSet instance at 0x112cdb998>
shapes = cartopy.io.shapereader.Reader(
'../data/maps/rgp_population/rgp_population')
pop = np.array([r.attributes['POPMUN2011']/r.attributes['AREA']
for r in shapes.records()])
gl = cartopy.crs.Globe(ellipse='GRS80')
prj = cartopy.crs.LambertConformal(central_latitude=46.5,
central_longitude=3.,
secant_latitudes=(49, 44),
false_easting=700000,
false_northing=6600000)
from matplotlib import colors, cm
from cartopy.io.img_tiles import MapQuestOSM
imaging = MapQuestOSM()
ax = plt.axes(projection=imaging.crs)
ax.set_extent((2.0277,2.6662,48.7200,48.9987))
ax.add_image(imaging, 12)
pop_colors = cm.YlOrRd(colors.Normalize()(pop))
for c,g in zip(pop_colors, shapes.geometries()):
ax.add_geometries(g, prj, facecolor=c, edgecolor='none', alpha=0.5)