# DAL ToolBox
# version 1.0.777
source("https://raw.githubusercontent.com/cefet-rj-dal/daltoolbox/main/jupyter.R")
#loading DAL
load_library("daltoolbox")
Loading required package: daltoolbox Registered S3 method overwritten by 'quantmod': method from as.zoo.data.frame zoo Attaching package: ‘daltoolbox’ The following object is masked from ‘package:base’: transform
data(sin_data)
ts <- ts_data(sin_data$y, 0)
ts_head(ts, 3)
t0 |
---|
0.0000000 |
0.2474040 |
0.4794255 |
library(ggplot2)
plot_ts(x=sin_data$x, y=sin_data$y) + theme(text = element_text(size=16))
samp <- ts_sample(ts, test_size = 5)
io_train <- ts_projection(samp$train)
io_test <- ts_projection(samp$test)
model <- ts_arima()
model <- fit(model, x=io_train$input, y=io_train$output)
adjust <- predict(model, io_train$input)
adjust <- as.vector(adjust)
output <- as.vector(io_train$output)
ev_adjust <- evaluate(model, output, adjust)
ev_adjust$mse
prediction <- predict(model, x=io_test$input[1,], steps_ahead=5)
prediction <- as.vector(prediction)
output <- as.vector(io_test$output)
ev_test <- evaluate(model, output, prediction)
ev_test
mse | smape | R2 |
---|---|---|
<dbl> | <dbl> | <dbl> |
0.4904025 | 1.489711 | -3.235632 |
yvalues <- c(io_train$output, io_test$output)
plot_ts_pred(y=yvalues, yadj=adjust, ypre=prediction) + theme(text = element_text(size=16))