# DAL ToolBox
# version 1.0.777
source("https://raw.githubusercontent.com/cefet-rj-dal/daltoolbox/main/jupyter.R")
#loading DAL
load_library("daltoolbox")
Loading required package: daltoolbox Registered S3 method overwritten by 'quantmod': method from as.zoo.data.frame zoo Attaching package: ‘daltoolbox’ The following object is masked from ‘package:base’: transform
data(sin_data)
ts <- ts_data(sin_data$y, 10)
ts_head(ts, 3)
t9 | t8 | t7 | t6 | t5 | t4 | t3 | t2 | t1 | t0 |
---|---|---|---|---|---|---|---|---|---|
0.0000000 | 0.2474040 | 0.4794255 | 0.6816388 | 0.8414710 | 0.9489846 | 0.9974950 | 0.9839859 | 0.9092974 | 0.7780732 |
0.2474040 | 0.4794255 | 0.6816388 | 0.8414710 | 0.9489846 | 0.9974950 | 0.9839859 | 0.9092974 | 0.7780732 | 0.5984721 |
0.4794255 | 0.6816388 | 0.8414710 | 0.9489846 | 0.9974950 | 0.9839859 | 0.9092974 | 0.7780732 | 0.5984721 | 0.3816610 |
library(ggplot2)
plot_ts(x=sin_data$x, y=sin_data$y) + theme(text = element_text(size=16))
samp <- ts_sample(ts, test_size = 5)
io_train <- ts_projection(samp$train)
io_test <- ts_projection(samp$test)
preproc <- ts_norm_gminmax()
model <- ts_elm(ts_norm_gminmax(), input_size=4, nhid=3, actfun="purelin")
model <- fit(model, x=io_train$input, y=io_train$output)
adjust <- predict(model, io_train$input)
adjust <- as.vector(adjust)
output <- as.vector(io_train$output)
ev_adjust <- evaluate(model, output, adjust)
ev_adjust$mse
prediction <- predict(model, x=io_test$input[1,], steps_ahead=5)
prediction <- as.vector(prediction)
output <- as.vector(io_test$output)
ev_test <- evaluate(model, output, prediction)
ev_test
mse | smape | R2 |
---|---|---|
<dbl> | <dbl> | <dbl> |
3.493086e-25 | 2.089072e-12 | 1 |
yvalues <- c(io_train$output, io_test$output)
plot_ts_pred(y=yvalues, yadj=adjust, ypre=prediction) + theme(text = element_text(size=16))