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Large-scale functional or structural brain connectivity can be modeled as a network, or graph. This paper
presents a statistical approach to identify connections in such a graph that may be associated with a
diagnostic status in case-control studies, changing psychological contexts in task-based studies, or
correlations with various cognitive and behavioral measures. The new approach, called the network-
based statistic (NBS), is a method to control the family-wise error rate (in the weak sense) when mass-
univariate testing is performed at every connection comprising the graph. To potentially offer a
substantial gain in power, the NBS exploits the extent to which the connections comprising the contrast or
effect of interest are interconnected. The NBS is based on the principles underpinning traditional cluster-
based thresholding of statistical parametric maps. The purpose of this paper is to: (i) introduce the NBS for
the first time; (ii) evaluate its power with the use of receiver operating characteristic (ROC) curves; and,
(iii) demonstrate its utility with application to a real case-control study involving a group of people with
schizophrenia for which resting-state functional MRI data were acquired. The NBS identified a expansive
dysconnected subnetwork in the group with schizophrenia, primarily comprising fronto-temporal and
occipito-temporal dysconnections, whereas a mass-univariate analysis controlled with the false discovery
rate failed to identify a subnetwork.
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Introduction

It has become fashionable in the field of neuroimaging to model
and analyze the brain in terms of a network. With the popularization
of complex systems theory and the emergence of network science,
graph models have become especially popular for they open up
the door to a systems-theoretic description of the brain. That is, a
description where brain complexity can be reduced to an account of
the interactions between basic neuronal elements.

The graph model of the brain is an abstract structure used to
represent pairwise relations between interregional ensembles of
neuronal elements, referred to as nodes. These pairwise relations, or
links, can either be of a functional origin and represent coherent
physiological activity between neural ensembles, or they can be of a
structural origin and represent anatomical connections formed by
white-matter axonal fiber tracts.

The graph model has been used in neuroimaging research as a
framework to test the structure-function hypothesis (Honey et al.,
2009, 2010; Ramani et al., 2004; Skudlarski et al., 2008; Sporns et al.,
2000) and as a methodological tool to examine brain network
organization, topology and complex dynamics (Bullmore et al.,
2009; Hagmann et al., 2008; Sporns et al., 2004). It has been found
that the human brain exhibits various nontrivial organizational and
topological properties, such as: assortativity, centrality, clustering,
efficiency, hierarchy, hubs, modularity, robustness, small-worldness,
synchronizability, etc. (see Bullmore & Sporns, 2009, for a review).
Differences in one or more of these properties have been found in
people with Alzheimer's disease (He et al., 2008; Stam et al., 2007),
attention-deficit disorder (Wang et al., 2009), multiple sclerosis (He
et al., 2009) and schizophrenia (Bassett et al., 2008, 2009; Liu et al.,
2008; Rubinov et al., 2009) as well as associations with age and
gender (Gong et al., 2009; Wang et al., 2010), and intelligence (van
den Heuvel et al., 2009; Li et al., 2009).

The graph model also provides an ideal framework to identify
functional or structural connections associated with a particular
effect or contrast of interest; for example, a group difference in a
case-control comparison, a difference due to changing task
conditions in a functional paradigm, or a correlation with some
clinical measure. To this end, mass-univariate testing of the
hypothesis is undertaken, after which the family-wise error rate
(FWE) is controlled with a generic procedure, such as the false
discovery rate (FDR) (Genovese et al., 2002). Specifically, a test
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statistic and corresponding p-value is independently computed for
each link based on the strength of the pairwise association the link
represents. The strength of a pairwise association between nodes is
usually measured as the value of temporal correlation (functional)
or the total number of interconnecting streamlines (structural).

The advantage of this approach is that it does not require
interpretation of any abstract organizational or topological properties.
Its main disadvantage though is the inherent massive number of
multiple comparisons that must be performed. To appreciate the
massiveness of the multiple comparisons problem, consider the
following: performing a mass-univariate analysis on a statistical
parametric map involves in the order of thousands of multiple
comparisons, say 1000 voxels for concreteness; however, if each of
these 1000 voxels delineates a unique node, the number of multiple

comparisons increases to a staggering 1000
2

� �
= 499;500 connec-

tions. With such a large number of multiple comparisons, together
with a potentially low contrast-to-noise ratio, mass-univariate testing
may not offer sufficient power.

Note that when the hypothesis of interest is associated with a
global network measure, the issue of multiple comparisons does not
arise. This paper exclusively focuses on multiple hypothesis testing,
where one instead tests the hypothesis of interest at each network
connection, thereby introducing more localizing power at the cost of
a massive number of multiple comparisons.

Themain contribution of this paper is to present a potentiallymore
powerful method to control the FWE when performing this kind of
analysis. The new method is called the network-based statistic (NBS)
and can be thought of as a translation of conventional cluster statistics
(Bullmore et al., 1999; Nichols & Holmes, 2001) to a graph. In brief, the
NBS operates as follows: foremost, the test statistic computed for each
link is thresholded to construct a set of suprathreshold links. Any
connected structures, or components in graph parlance, that may be
present in the set of suprathreshold links are then identified. A p-value
is assigned to each identified component by indexing its size with the
null distribution of maximal component size.

In this way, the NBS attempts to utilize the presence of any structure
exhibited by the connections comprising the effect or contrast of interest
to yield greater power thanwhat is possible by independently correcting
the p-values computed for each link using a generic procedure to control
the FWE. In this paper, any procedure for controlling the FWE that treats
each link independently will be referred to as a link-based controlling
procedure, or simply link-based FWE control.

TheNBS is not intended as a replacement for link-based FWE control.
In particular, the NBS offers no power if the links associated with the
contrast or effect of interest are in isolation of each other and do not
formany connected structures. Therefore, in addition to introducingand
demonstrating the utility of the NBS, one of the main purposes of this
paper is to undertakea quantitative evaluationof thegain (andpotential
loss) in statistical power offered by our new approach. To this end,
the paper comprises three parts: Section 2: introduction of the NBS by
way of an illustrative example; Section 3: evaluation of the power of the
NBS with use of receiver operating characteristic (ROC) curves; and,
Section 4: demonstration of theNBS in the context of a real case-control
study involving resting-state functional MRI data acquired in 12 people
with schizophrenia and 15 controls.

Methods

To use the NBS, one must first generate a connectivity matrix for
each subject. The connectivity matrix is intrinsic to the graph model
and its computation has been described in (Bullmore & Sporns, 2009)
and many references therein. As such, the main focus of this section
is the implementation of the NBS after the connectivity matrix stage
has been reached, though a brief overview of getting to this stage is
provided for completeness.
Connectivity matrix

To define the graph model, it is first necessary to delineate an
appropriate set of nodes. The choice of nodes is dependent on the
imaging modality. For electroencephalography or magnetoencepha-
lography, a natural choice is the set of array electrodes or scalp
sensors, while in the case of functional, structural and diffusion MRI,
a node usually represents a contiguous group of voxels, or possibly a
single voxel. In this case, delineating a set of nodes involves
subdividing the whole cortex into a set of regions either randomly,
with reference to a predefined histological or functional subdivision,
or simply by defining every cortical voxel to constitute a unique node
(van den Heuvel et al., 2008). For example, the automated
anatomical labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002), a
gross functional subdivision of the cortex, was used to delineate the
set of nodes for the resting-state study presented in this paper (see
Section 4). Further discussion on the choice of nodes is provided in
Zalesky et al., (2010).

The next step is to estimate a continuous measure of pairwise
association between nodes. This measure is stored in a symmetric
N×N connectivity matrix, where N is the total number of nodes. Each
row/column of the connectivitymatrix corresponds to a distinct node,
such that position (i, j) uniquely stores the measure of association
between the ith and jth nodes.

The appropriate measure of association largely depends on the
imagingmodality. In the caseof functionalMRI, electroencephalography
or magnetoencephalography, temporal correlations (Achard et al.,
2006; Deuker et al., 2009; Fair et al., 2009; Hayasaka & Laurienti,
2010; Honey et al., 2009; Li et al., 2009) or mutual information (Bassett
et al., 2009) in the node-averaged signals are computed. Any temporal
correlationprovides evidence for coherent neural dynamics and thereby
determines the extent to which nodes are functionally connected.
Therefore, in this case, the connectivity matrix is invariably populated
with some kind of measure of correlation.

In the case of diffusion MRI, associations are of a structural origin
and represent anatomical connections formed by white-matter
axonal fiber tracts. With the use of a tractography (Basser et al.,
2000; Conturo et al., 1999), hundreds of thousands of streamlines
are generated to etch out the trajectories of these fiber tracts and the
association between a pair of nodes is measured by the number of
streamlines via which they are interconnected (Gong et al., 2009;
Hagmann et al., 2007, 2008; Itturia-Medina et al., 2008; Li et al.,
2009; Skudlarski et al., 2008; Zalesky et al., 2010), or in some cases,
a pseudo-measure of the tract-averaged anisotropy (Robinson et al.,
2010) or an estimate of fiber bundle cross-sectional area (Zalesky &
Fornito, 2009). Alternatively, cross-subject correlation in estimates
of cortical thickness or volume, derived from structural
MRI, provide an alternative means to measure structural associa-
tions between nodes (Bassett et al., 2008; He et al., 2007, 2008,
2009).

The next step in a typical analysis would be to apply a threshold to
each element of the connectivity matrix and thereby define a sparse
graph; that is, a graph in which links are only drawn between those
pairs of nodes demonstrating a measure of association exceeding the
predefined threshold. Unfortunately, this step introduces a potential
confound if the properties of several graphs are to be compared in
the context of a case-control study. In particular, applying the same
threshold to several connectivity matrices is likely to produce
different levels of sparsity (i.e. different number of links), and thus
it is not possible to rule out systematic sparsity differences as the
root cause of any group differences in topological or organizational
properties. While graphs can be matched in terms of sparsity, this
necessitates selection of a distinct threshold for each connectivity
matrix, which in itself raises potential concerns. An advantage of the
NBS is that it operates directly on the raw measure of connectivity,
rather than a binary adjacency matrix.
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Network-based statistic

For ease of exposition, the NBS is described here within the
framework of a generic case-control study. However, it is important
to note that the NBS is easily generalizable to multifactorial designs
stemming from, for example, task-based functional MRI studies, as we
have recently demonstrated in Fornito et al., 2010.

The purpose of the NBS in the context of a case-control study is to
identify any pairwise associations that are significantly different
between groups. In the graph model, a pairwise association manifests
as a “connection,” or link, between a distinct pair of nodes. An N×N
connectivity matrix stores the estimates of a total of N(N−1)/2 unique
pairwise associations. For each of these associations, the test statistic
of interest is calculated independently using the values stored in each
subject's connectivity matrix. In some circumstances, it may be
appropriate to first transform the raw measure of association; for
example, Fisher's r-to-z transform can be applied to a correlation based
measure of association to ensure normality. This is not a specific
requirement of the NBS, which is a nonparametric technique, but yields
a sensible measure of variation to which a threshold can be applied.

The NBS seeks to identify any potential connected structures
formed by an appropriately chosen set of suprathreshold links. The
topological extent of any such structure is then used to determine its
significance. This process is performed as follows: the test statistic
computed for each pairwise association is thresholded to construct a
set of suprathreshold links. Any connected components that may be
present in the set of suprathreshold links are then identified using a
breadth first search (Ahuja et al., 1993) and the number of links they
comprise, or their size, is stored.

Permutation testing is used to ascribe a p-value controlled for the
FWE to each connected component based on its size. A total of M
random permutations are generated independently, where for each
permutation, the group to which each subject belongs is randomly
exchanged. For each permutation, the test statistic of interest is
recalculated, after which the same threshold is applied to define a set
of suprathreshold links. The maximal component size in the set of
suprathreshold links derived from each of theM permutations is then
determined and stored, thereby yielding an empirical estimate of the
null distribution of maximal component size. Finally, the p-value of an
observed component of size k is estimated by finding the total number
of permutations for which the maximal component size is greater
than k and normalizing by M. This kind of permutation testing is not
new and is synonymous with conventional cluster-based threshold-
ing of statistical parametric maps (Bullmore et al., 1999; Hayasaka &
Nichols, 2004; Nichols & Holmes, 2001). The novelty here is in the
translation and application of this approach to the graph model (see
Fig. 1. The equivalence between a cluster in a statistical parametric map (left) and a
component in a graph (right). Both are of extent five: the cluster comprises five
voxels, while the component comprises five links. Note that a cluster is defined by
spatial contiguity of suprathreshold voxels in physical image space, whereas a graph
component is defined by interconnectedness of suprathreshold links in topological
space.
Fig. 1). The approach can also be straightforwardly generalized to
multifactorial designs (Suckling & Bullmore, 2004).

To implement the NBS, an algorithm is required to compute the set
of all connected components in a graph. This can be achieved in a
runtime of O(N+L) using a breadth-first search (Hopcroft & Tarjan,
1973), where N is the number of nodes and L is the number of
suprathreshold links. This is repeated for M permutations to estimate
the null distribution, thereby yielding a total runtime of O(M(N+L)).
In practice, the majority of runtime is devoted to computing the test
statistic of interest at each link.

Relation to link-based FWE control

Instead of the NBS, an alternative is to apply a generic procedure,
most likely the FDR, to control for the massive number of multiple
comparisons. In this context, the FDR is referred to as a link-based
controlling procedure because each link is treated independently for
the sake of FWE control. Note that the FDR controls the FWE in the
weak sense (Nichols & Hayasaka, 2003). The NBS is not intended as a
replacement for link-based controlling procedures such as the FDR,
it is rather a complementary procedure that can offer substantially
greater power if the connections associated with the contrast or effect
of interest are interconnected to form a structure; or more precisely,
a connected component. The underlying principle behind the NBS is
to utilize the presence of any such components to potentially yield
greater power than what is possible by independently correcting the
p-values computed for each link. The NBS offers the greatest gain in
power when the link-based p-values associated with the contrast
are marginal, usually due to a low contrast-to-noise ratio, but are
interconnected to form components. As the extent (size) of such a
component decreases, it becomes more difficult to identify with the
NBS, until the NBS is utterly powerless in the extreme case when the
component comprises a single isolated link. As the contrast-to-noise
ratio increases, the NBS continues to perform well, but link-based
FWE control is then likely to perform just as well. These qualitative
remarks are quantified in Section 3.

Finally, it is important to remark that the NBS is not entirely
equivalent to link-based FWE control. With a link-based controlling
procedure, the null hypothesis can be rejected on a link-by-link basis.
With the NBS on the other hand, the null hypothesis can only be
rejected on a component-by-component basis. Hence, with the NBS, it
is never possible to declare individual links as being significant, only
the component to which they belong can be declared significant. In
this way, the NBS offers weak control over the FWE. Any significant
result therefore provides evidence against the omnibus null hypoth-
eses; however, because the false positive rate is not controlled at the
link level, as would be required by strong control of FWE (Nichols &
Hayasaka, 2003), individual links cannot be declared significant. This
means the potential gain in power offered by the NBS comes at a price:
localizing resolution is coarsened from the scale of a link to the scale of
a component.

Illustrative example

To conclude this section, an illustrative example is presented in
Fig. 2 to demonstrate the gain in power offered by the NBS relative to
link-based FWE control, in a situation that is suited to theNBS; namely,
a relatively low contrast-to-noise ratio of unity and a contrast that is
defined by a set of links that form a single connected component.

For the purpose of the example, a between group difference was
simulated inwhich a connected component, referred to as the contrast,
was “disrupted” in one of the two groups. In one group, themeasure of
association assigned to each link was sampled from a Gaussian
distribution of zero mean and unity variance. In the other group,
sampling was also from a Gaussian distribution of unity variance, but
with unity mean if the link comprised the contrast, otherwise with a



Fig. 2. The network-based statistic (NBS) as well as link-based FWE control provided by the false discovery rate (FDR) were used to detect a contrast that was simulated between two
groups: (i) a connected component, referred to as the contrast, was disrupted in one of the groups to yield a contrast-to-noise ratio of unity between the two groups. The red blocks of the
adjacencymatrix indicate links comprising the contrast, while thewhite blocks indicate the other links thatwere tested butwere not part of the contrast. (ii) The FDRwas used to identify
the component using false discovery rate thresholds of q=5,10 and 20%. (iii) TheNBSwas then usedwithprimary (t-statistic) thresholds of t=1,1.5 and2. True positives, colored orange,
correspond to connections thatwere part of the contrast and correctly identified as such,while false positives, colored red, correspond to connections thatwere not part of the contrast but
incorrectly identified as such. Each component identified by the NBS satisfied pb0.01. With link-based FWE control, the full extent of the contrast only became evident for a liberal false
discovery rate threshold. The true and [false] positive rates for each threshold were: FDR: q=5%: 0.3[0]; q=10%: 0.5[0]; q=20%: 0.7[0.006]; and NBS: t=1: 1[0.08]; t=1.5: 0.9[0.01];
t=2:0.9[0.006]. Nodes are depicted at their two-dimensional center ofmass. The two components evident for t=2were eachof sufficient size tobedeclared significant in their own right.
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mean of zero. This yielded a contrast-to-noise ratio of unity. A t-
statistic and corresponding p-value was then calculated for each link,
afterwhich theNBS and the FDRwere used to identify the contrast (see
caption of Fig. 2 for details). The graph model comprised a total of 82
nodes, each of which was extracted from the AAL atlas.

In Fig. 2, it can be seen that for even a very liberal FDR threshold of
q=20% (Genovese et al., 2002), link-based FWE control yielded a true
positive rate of 0.7, with a false positive rate of 0.006. However, with
the NBS, for p=0.01 corrected, the true positive rate was 0.9, with a
false positive rate of 0.006 (t=3). It is crucial to remember though
that this gain in power is at the cost of offering only weak control of
the FWE.
Performance evaluation

Receiver operating characteristic (ROC) curves are presented in
this section to evaluate the specificity and sensitivity of the NBS as
well as link-based FWE control under a range of different network
topologies, contrast extents and contrast-to-noise ratios. The FDR

image of Fig.�2
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served as the link-based controlling procedure, and thus any reference
to FDR in this section is synonymous with link-based FWE control.

An ROC curve is a plot of the true positive rate (TPR) against
the false positive rate (FPR), which is generated by varying the
discrimination threshold over a continuous range. In the case of the
NBS, the discrimination threshold is the minimum size of a com-
ponent for it to be declared significant, while for the FDR, the q-value
(Genovese et al., 2002) serves as the discrimination threshold. Ideal
performance is indicated by a point in the upper left corner of the ROC
curve, which represents 100% sensitivity (no false negatives) and
100% specificity (no false positives).

To construct an ROC curve, a contrast was simulated, corrupted
with noise and then the NBS and the FDR were separately used
to identify the contrast for a range of discrimination thresholds.
The TPR was computed as |P∩ ĥ|/|P| and the FPR was computed
as |N ∩ ĥ|/|N |, whereP was the set of links comprising the contrast,N
was the set of links comprising the rest of the network and ĥwas the
set of links declared significant. This was repeated independently for
103 trials and the average TPR and FPR was computed across the trials
for each threshold. In this way, the TPR and FPR were parameterized
in terms of the discrimination threshold. The TPR was then plotted as
a function of the FPR in the range 0.001 to 0.05. An FPR exceeding 0.05
is most likely of no interest in a typical analysis and was therefore not
considered, while an FPR below 0.001 was far too stringent to detect
the contrast given the contrast-to-noise ratios evaluated.

The Barabási–Albert (BA) model (Albert & Barabási, 2002) was
used to generate a random, scale-free network for each trial using a
preferential attachment mechanism. A scale-free model was chosen
because some studies have shown that brain networks are scale-free
(Eguiluz et al., 2005; van den Heuvel et al., 2008), although it is
important to remark that other studies have presented evidence for
different degree distributions (Achard et al., 2006). The BA model
is attractive because it is fully connected by construction, and it can
be parameterized with only two variables, the number of nodes
comprising the network, N, and a variable, m, which denotes the
number of existing nodes to which a newly added node is attached to
during each iteration of the preferential attachment mechanism.
Hence, the number of links in the BA model is approximately Nm.

The next step was to create a contrast for each network. The
contrast comprised a set of links that necessarily formed a connected
Fig. 3. Receiver–operator characteristic (ROC) curves were plotted to objectively compare th
control provided by the FDR. A separate ROC was plotted for three different contrast-to-nois
contrast that was simulated between two groups. In particular, a random, scale-free networ
was altered in one group to yield a CNR between the two groups of: (i) 0.5, (ii) 1 and (iii) 1.5
contrast. The average true positive rate (TPR) over the 1000 realizations was then plotted as
FDR (colored blue) corresponds to a distinct q-value, some of which have been indicated as a
threshold (i.e. components of size exceeding this threshold are declared significant). Obser
termination point represents the minimum possible component size threshold of unity.
component. The contrast was created by initiating a breadth first
search (Ahuja et al., 1993) from a randomly chosen node in the
network. Each link traversed during the search was included in the
contrast and the search was terminated as soon as the contrast grew
to reach its desired size.

Finally, a between group differencewas createdwith respect to the
contrast. In one group, the measure of association assigned to each
link was sampled from a Gaussian distribution of zero mean and
unity variance. In the other group, sampling was also from a Gaussian
distribution of unity variance, but with a mean of μ if the link
comprised the contrast, otherwise with a mean of zero. This yielded a
contrast-to-noise ratio of μ.

The steps undertaken to construct an ROC curve can be summa-
rized as follows:

(i) Generate a network with N nodes using the BA preferential
attachmentmechanism. Let L be the set of links comprising the
network.

(ii) Initiate a breadth first search from a randomly chosen node to
define a set of links, P⊂L, to serve as a contrast. Terminate the
search as soon the contrast is of the desired size.

(iii) Let al be the measure of association at link l∈L. In one group,
sample such that al∼N(0,1) for all l∈L, which yields a noise-
only network. In the other group, al∼N(μ,1) if l∈P, otherwise
al∼N(0,1), which yields a noise + contrast network.

(iv) Performmass-univariate testing for a between group difference;
in particular, compute a t-statistic and corresponding p-value
for each link.

(v) Use the NBS as well as link-based FWE control to yield an
estimate, ĥ, of the set of links comprising the contrast for a
range of discrimination thresholds.

(vi) For each discrimination threshold, compute TPR=|P∩ ĥ|/|P|
and FPR=|N ∩ ĥ|/|N |.

(vii) Repeat the above for 103 trials to yield an average FPR and TPR.

Performance evaluation results

The ROC curves are presented in Figs. 3–5. Fig. 3 considers a contrast
of 10 links embedded in a network comprising 100 nodes and 200 links
(m=2) for contrast-to-noise ratios of: (i) 0.5, (ii) 1 and (iii) 1.5. A
e specificity and sensitivity of: the network-based statistic (NBS); and, link-based FWE
e ratios (CNR). To generate each ROC curve, the NBS and the FDR were used to detect a
k of 100 nodes was generated and the connectivity in a component comprising 10 links
. This was repeated 1000 times, each time generating a new random network and a new
function of the average false positive rate (FPR). Each point along the ROC curve for the
percentage. For the NBS (colored red), each point represents a distinct component size
ve that the NBS curve abruptly terminates and does not extend to an FPR of 0.1. This

image of Fig.�3


Fig. 4. The effect of a change in network size. In Fig. 3, the network comprised 100 nodes, 200 links and a contrast comprising 10 links. Here, the experiment was repeated for a larger
network comprising 500 nodes and 1000 links, also with a contrast of 10 links. Therefore, the ratio of the total number of links to the number of links comprising the contrast was
increased 5-fold from 200/10=20 to 1000/10=100. This figure demonstrates that the gain in power offered by the NBS increases with network size. See Fig. 3 caption for further
details.
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crossover point is evident for eachROC curve in Fig. 3. To the right of the
crossover point, the NBS curve is higher than the FDR curve, signifying
the NBS offers greater power over the range to the right of the crossover
point. To the left of the crossover point, the opposite is true, and thus the
FDR offers greater power over this range. The NBS clearly offers the
greatest power over the TPR range probably of most interest, 0.5 to 1,
although the advantage of the NBS declines as the contrast-to-noise
ratio increases, until both approaches perform equally.

In Fig. 3, q-values have been indicated at strategic points along the
FDR curve. The q-value is essentially the FDR analogue of the p-value,
and is the minimum FDR at which significance is declared. The
disadvantage of the FDR here is that a very high q-value (q=20–50%)
is required to achieve a reasonable FPR. For example, Fig. 3(ii) shows
that a q-value threshold exceeding 20% is required to enforce a rather
strict FPR of 0.01. This suggests that the FDR may be overly
conservative in cases of low contrast-to-noise ratio.

Fig. 4 considers a substantially larger network than Fig. 3 to
evaluate the effects of a change in network size. Specifically, Fig. 4
considers a contrast of 10 links embedded in a network comprising
500 nodes and 1000 links (m=2) for the same set of contrast-to-
noise ratios. Therefore, relative to Fig. 3, the ratio of the number of
links comprising the contrast to the total number of links is reduced
100-fold from 10/100 to 10/1000. The same features are evident in
Fig. 4; however, the crossover point is shifted further to the left and
Fig. 5. The effect of a change in network sparsity. In Fig. 3, the network sparsity was 4% (100 n
(ii) 8% and (iii) 16%. Sparsity was altered by increasing the number of connections and maint
used. This figure shows that the gain in power offered by the NBS is relatively unchanged t
now occurs at an FPR well below 0.01. This indicates that the FPR
range over which the NBS is favorable increases with network size.

Finally, Fig. 5 considers a change in network sparsity. In Fig. 3, the
network sparsity was 4%. In Fig. 5, the sparsity is increased to (i) 2%,
(ii) 8% and (iii) 16%. Sparsity was altered by including more links and
maintaining the total number of nodes fixed at 100. In particular, the
preferential attachment mechanism underlying the BA model was
implemented with an increased value of m. Fig. 5 suggests that
variations in sparsity impart a negligible effect.

The area under each ROC curve is shown in Supplementary
Table S1.

While it is important to keep in mind that these conclusions do
not necessarily generalize to problems of an arbitrary nature, it may
be useful to summarize the key features evident in Figs. 3–5:

− The NBS is of no use if the contrast does not form a connected
component. The following remarks pertain only to scenarios
where the contrast does form a component.

− A single crossover point exists at which the NBS and the FDR offer
equal power. The NBS offers greater power to the right of the
crossover point. The right of the crossover point encompasses the
TPR region of most interest, 0.5 to 1.

− As the contrast-to-noise ratio is increased, both the FDR and the
NBS perform equally well.
odes and 200 links). Here, the experiment was repeated for networks of sparsity: (i) 2%,
aining the total number of nodes fixed at 100. A unity contrast-to-noise (CNR) ratio was
o variations in sparsity. See Fig. 3 caption for further details.
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Table 1
Node abbreviations and degree.

Abbreviations Node Degree

PreC Precentral L 2
Precentral R 1

Rola Rolandic Oper L 3
Rolandic Oper R 4

SMA Supp Motor Area L 7
Supp Motor Area R 3

Cgl2 Cingulum Mid L 2
Cingulum Mid R 1

Calc Calcarine L 2
Calcarine R 1

PstC Postcentral L 6
Postcentral R 2

Hesc Heschl L 13
Heschl R 1

Tem1 Temporal Sup L 1
Temporal Sup R 1

Fro1 Frontal Sup L 1
Fro8 Frontal Inf Orb L 2
Fro9 Frontal Sup Medial L 1
Fro0 Frontal Med Orb L 6
Insu Insula L 1
Cgl1 Cingulum Ant L 1
Hipp Hippocampus L 3
Amy Amygdala L 1
Cune Cuneus L 3
Ling Lingual R 3
Occ1 Occipital Sup L 5
Par1 Parietal Sup L 1
PCun Precuneus L 2
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− The gain in power offered by the NBS increases as the number of
nodes and links is increased, with the contrast extent held
constant, but is insensitive to variations in sparsity.

− A very high q-value (q=20–50%) is required to operate over the
range considered, indicating that the FDR may be overly conser-
vative in cases of low contrast-to-noise ratio.

Finally, it is important to remark that the abscissa of each ROC
curve is the expected proportion of false positives per trial. An
alternative would have been to quantify the FPR as the proportion of
trials for which there exists at least one false positive. Both definitions
have distinct pros and cons. The former definition is the more
conventional of the two and enables a better characterization of
accuracy as well as requiring simulation of fewer trials. The main
advantage of the latter definition is that it represents the strictest
possible control of the FWE. The former definition may be considered
more appropriate here given that the NBS is not intended to offer any
control of the FWE at the level of individual links.

Application

The purpose of this section is to present new results derived from
application of the NBS to a real case-control study involving a group of
people with schizophrenia. In this section, a pair of nodes showing a
weaker association in the group with schizophrenia is referred to as a
dysconnection and the set of all such dysconnections is referred to as
the dysconnected subnetwork.

Sample, data acquisition and processing

Sample characteristics
Fifteen healthy volunteers (mean age 33.3 years, σ=9.2 years, 14

male) were recruited as well as 12 people with chronic schizophrenia
(mean age 32.8 years, σ=9.2 years, 10 male) diagnosed according to
standard operational criteria in the Diagnostic and Statistical Manual
of Mental Disorders IV (American Psychiatric Association, 2000). The
two groups were matched for age, pre-onset IQ and years of education.
All patients were receiving antipsychotic drugs. Four were receiving
additional psychotropic medication. To reduce acute drug effects on
the acquired data, patients did not receive their usualmedication on the
day of scanning. All subjects provided informed consent in writing
and the protocol was approved by the Addenbrooke's NHS Trust Local
Research Ethics Committee.

Acquisition
A 1.5 Tesla GE Signa scanner (General Electric, Milwaukee, WI)

located at the BUPA Lea Hospital, Cambridge, UK, was used to acquire
T2*-weighted echo-planar images depicting blood oxygenation level-
dependent contrast as participants laid quietly in the scanner with
eyes closed. Imaging parameters were as follow: repetition time: 2 s,
echo time: 40 ms,flip angle: 70 degrees, voxel size: 3.05×3.05×7 mm,
slice gap: 0.7 mm, flip angle: 70 degrees, number of volumes: 512.

Processing and analysis
Each subject's functional volumes were realigned using a rigid-

body transformation to correct for geometric displacements associ-
ated with head movements and rotations (Suckling et al., 2006).
Temporal motion correction was then performed by regressing the
current and lagged first and second order displacements against the
time series of the realigned images. The residuals of this regression
were then used for further analysis. These steps were implemented
using freely available software (http://www-bmu.psychiatry.cam.ac.
uk/software).

Nodes were delineated using a subset of the nodes comprising the
AAL atlas. All nodes comprising the cerebellum were excluded as well
as any nodes for which the node-averaged time series could not be
accurately estimated, primarily due to poor coverage in one or more
subjects. As such, a node-averaged time series was estimated in a total
of 74 nodes spanning the cortex and subcortex.

The time series of each node was decomposed into four distinct
frequency bands using themaximal overlapwavelet transform (Achard
et al., 2006). For this paper, only scale 3 of the decomposition was
considered, corresponding to the frequency range 0.03b fb0.06 Hz,
which is consistent with the range most commonly studied in resting-
state functional MRI studies. These filtered time series were then
corrected for fluctuations of nuisance signals of no interest via linear
regression against reference time courses extracted from seed regions
placed in the white matter and cerebrospinal fluid.

A 74×74 connectivity matrix was then populated for each subject,
where the correlation in the preprocessed times series between the
ith and the jth node was stored in element (i, j). A t-test contrasting
the two groups was then computed for each pairwise association,
based on the values stored in each subject's connectivity matrix. Any
association with a t-statistic exceeding 3 was admitted to the set of
suprathreshold links used by the NBS. The NBS was implemented as
described in Section 2 andM=5000 permutations were generated to
estimate the null distribution of maximal component size.

To serve as a comparison, in a separate analysis, link-based FWE
control was performed based on the p-values derived from the t-test.
This corresponds to a conventional analysis that would be undertaken
in the absence of the NBS. The FDR served as the link-based controlling
procedure in this conventional analysis.

Dysconnected subnetwork

The NBS identified a single dysconnected subnetwork (p=0.037±
0.005, corrected) in the group with schizophrenia comprising 40
functional dysconnections. The confidence interval for the p-value
was estimated parametrically as 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðpð1−pÞ=MÞp
. Fig. 8 shows an

axial schematic of the subnetwork, while Fig. 9 shows a three-
dimensional visualization with both an oblique and axial perspective.

http://www-bmu.psychiatry.cam.ac.uk/software
http://www-bmu.psychiatry.cam.ac.uk/software


Fig. 7. Adjacency matrices showing dysconnections (white blocks) in the group with
schizophrenia identified with: (a) link-based FWE control provided by the FDR; and,
(b) the NBS. The FDR identified a single dysconnection between the left post-central
gyrus (PstC) and left rolandic operculum (Rola), while the NBS identified a single
dysconnected subnetwork primarily comprising fronto-temporal and occipito-tempo-
ral dysconnections (see Fig. 8).
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Table 1 lists the nodes comprising the dysconnected subnetwork
as well as their degree in this subnetwork, anatomical name and
abbreviation.

When considering Figs. 8 and 9, it is important to remember that
no individual dysconnection can be declared significant alone, only
the dysconnected subnetwork as a whole can be declared significant.
With respect to Fig. 8, it should additionally be noted that each node is
positioned at its two-dimensional center of mass (left-right and
anterior-posterior), resulting in no depth in the axial plane. This gives
the illusion that the SMA nodes (supplementary motor area), for
example, are located within the ventricles, which occurs simply
because the axial slice chosen as the underlay is far more inferior than
the SMA.

The dysconnected subnetwork identified with the NBS predomi-
nantly comprises fronto-temporal and occipito-temporal dysconnec-
tions, as well as SMA-temporal, SMA-occipital and the cingulum.
While the dysconnected subnetwork is relatively bilateral, the left
hemisphere is clearly affected to a greater extent. Indeed, the node
fromwhich the greatest number of dysconnections originate is the left
Heschl's gyrus (Hesc), followed by the left post central gyrus (PstC)
and the left SMA (see Table 1). Furthermore, the frontal regions
implicated are exclusive to the left hemisphere, and thus the set of
fronto-temporal dysconnections are asymmetric in the sense that the
right temporal nodes show dysconnection with the left frontal nodes,
but the converse is not evident.

The empirically computed null distribution of maximal component
size is plotted in Fig. 6.

Comparison to link-based FWE control

For a rather liberal minimum FDR threshold of q=10%, link-based
FWE control only identified a single dysconnection between the left
post-central gyrus (PstC) and left rolandic operculum (Rola). This is
in fact one of the dysconnections constituting the dysconnected
subnetwork identified by the NBS. No significant findings were
evident for the more commonly used threshold of q=5%. Fig. 7
depicts the dysconnections identified by the NBS and the FDR in the
form of separate adjacency matrices. A dysconnection is shown as
a white block, while all other connections are colored black.

Discussion

With continuing popularization of the graph model in all kinds of
neuroimaging research, we believe there is a need for statistical
approaches to identify connections in this model that may be
associated with an effect or contrast of interest; for example,
Fig. 6.Empirically computednull distribution ofmaximal component size. The component
identified in the real data comprised 40 connections.
diagnostic status in a case-control comparison, a difference due to
changing task conditions in a functional paradigm, pharmacological
modulation, or correlation with some external behavioral measure.
While mass-univariate testing is an option, the enormous number
of multiple comparisons involved, together with a potentially low
contrast-to-noise ratio, means that this approach may be underpow-
ered. The NBS is a new option that can offer substantially greater
power if the connections associated with the contrast or effect of
interest are interconnected to form a structure; or more precisely, a
connected component. The underlying principle behind the NBS is to
utilize the presence of any such components to potentially yield
greater power than what is possible by independently correcting the
p-values computed for each connection comprising the graph with a
generic procedure such as the FDR (Figs. 8 and 9).

But is the NBS really necessary? Indeed, if the contrast-to-noise
ratio is sufficiently high, generic procedures that operate on the link-
based p-values alone can presumably provide enough power to
declare the effect of interest significant. Moreover, generic procedures
such as the FDR offer three distinct advantages over the NBS.
Foremost, the NBS must be used under the assumption that the
connections comprising the contrast of interest form components. If
they do not form components, or if the extent of the components
formed are too small, the NBS is ineffective, whereas generic
procedures providing link-based FWE control do not require any
such assumption. Secondly, the NBS only offers weak control of the
FWE; that is, with the NBS, only the omnibus null hypothesis for a
component can be rejected, but the individual connections compris-
ing a component can never be declared significant. In this way, the
NBS provides coarser localizing power. And thirdly, when using the
NBS, a rather arbitrary choice must be made to select the value of
the threshold used to define the set of suprathreshold links.

So why use the NBS, given that its localizing power is coarser and
it necessitates an assumption on the interconnectedness of the
contrast? Firstly, we believe that the assumptions on which the NBS
is based are implicit in a typical network analysis of neuroimaging
data. In particular, the hypothesis tested usually involves examination
of effects distributed across various components of information-
processing pathways. While it is possible for highly focal effects to
exist in a given network, most networks, being interconnected by
definition, are likely to show secondary consequences of any focal
effects that can propagate along interconnected pathways. Thus, most
effects are likely to influence interconnected subnetworks that the
NBS is well suited to detecting.

The second reason is simply a matter of power—the NBS can offer
substantially greater power in the right circumstances, which is

image of Fig.�7
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Fig. 8. The NBS identified a dysconnected functional subnetwork (p=0.037±0.005, corrected) in a group of 12 people with schizophrenia. The dysconnections comprising this
subnetwork correspond to pairs of nodes between which the resting-state times series (wavelet decomposed) was more weakly correlated in the group with schizophrenia than in
the control group. It is important to emphasize that no individual dysconnection can be declared significant alone, only the dysconnected subnetwork as a whole can be declared
significant. Each node is depicted as a circle positioned at its center of mass. See Table 1 for node abbreviations.
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advantageous in the context of the graph model due to the massive
number of multiple comparisons that arise when the hypothesis of
interest is tested at every connection. To appreciate the massiveness of
the multiple comparisons problem, an example was given where it was
shown that the number of multiple comparisons scaled polynomially
with the number of voxels of interest, namely O(N2), whereas the
number of multiple comparisons performed in a statistical parametric
map is linear in the number of voxels of interest. Therefore, due to this
massive increase, the contrast-to-noise ratio ought to be very high if a
generic procedure is to have any chance of declaring the contrast
significant. Unfortunately, the range of measures available to quantify
pairwise associations between nodes is derived from MRI data or other
experimental imaging modalities, which are invariably noisy. It is thus
inevitable for this noise to propagate to the measure of association,
potentially resulting in a low contrast-to-noise ratio. For example, the
number of interconnecting streamlines, a measure of anatomical
connectivity derived from diffusion MRI, is notoriously noisy due to
artifacts stemming from tractography (Zalesky & Fornito, 2009).

As such, a conventional mass-univariate analysis within the
framework of the graph model may not be able to provide sufficient
power. This lack of power motivated the development of the NBS. The
NBS is founded on the same principle underlying traditional cluster-
based thresholding of statistical parametric maps. Themain difference
is that graph components play the role of voxel clusters.
With the NBS, the link-based p-values corresponding to the
contrast or effect of interest need not be so significant as to survive
in a sea of potentially hundreds of thousands of multiple comparisons
(as would be required by the FDR). Instead, they only need to be
significant enough to be admitted into the set of suprathreshold links,
and assuming they are interconnected to form a sufficiently large
component (or components), they can be declared significant. In a
mass-univariate analysis controlledwith the FDR though, to survive in
a sea of hundreds of thousands of multiple comparisons, the contrast-
to-noise ratio would need to be high in order to yield very significant
link-based p-values.

An advantage of the NBS is that its powermay scale with the size of
the network. Suppose the cortex is coarsely subdivided into a total of
10 nodes, and the NBS as well as conventional mass-univariate testing
identify a significant effect involving say three connections giving rise
to a component of extent three. For a coarse subdivision such as this, a
node is likely to encompass several functionally distinct regions, and
thus any dysconnections between regions that are lumped together
within a common node cannot be identified because they are simply
not modeled. Now suppose the cortex is subdividedmore finely into a
total of 1000 nodes. The number of multiple comparisons increases
from 45 to 499,500, and thus a mass-univariate analysis may not
have sufficient power to detect the effect unless the contrast-to-noise
ratio is high. The NBS is also likely to have difficulty in identifying

image of Fig.�8


Fig. 9. Three-dimensional visualization of the dysconnected functional subnetwork
identified with the NBS in a group of 12 people with schizophrenia. See caption of Fig. 8
for details. Red: occipital/parietal nodes. Green: temporal nodes. Purple: pre and post
central gyrus. Light blue: frontal nodes. Blue: cingulum. Magenta: Supp. Motor Area.
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a component of extent three in a network comprising 499,500
connections, for the possibility of a component of larger or equal
extent arising as a matter of chance increases dramatically relative to
the 10 node case. However, the effect is likely to be more extensive
now and therefore easier to detect because dysconnections between
nodes that were previously lumped together within a common node
nowarise. In otherwords, although themultiple comparisons problem
is exacerbated as the size of the network is increased, the extent of the
contrast or effect of interest is also likely to scale upwith network size.

The NBS attempts to exploit the interconnected nature of link-based
effects, as revealed through mass univariate testing. This makes the
approach relatively simple to implement and interpret. However, brain
connectivity data are inherently multivariate in nature. As such, multi-
variatemethodsmay provide added sensitivity for detecting alterations
of connectivity under various conditions. In a multivariate version of
the NBS, functional as well as anatomical measures of connectivity can
be combined, for example, by computing Hotelling's T2 statistic at each
link.

Finally, it is important to make clear that it is difficult to provide
definitive rules guiding how to choose the set of suprathreshold links.
If the threshold is chosen too low, large components can arise in the
permuted data as a matter of chance and thereby reduce power. In
contrast, if the threshold is set too high, connections comprising the
effect of interest may not be admitted to the set of suprathreshold
links. In Section 3, the thresholds used for the NBS were chosen rather
arbitrarily; namely, t=1.5 if the contrast-to-noise ratio was below
unity and t=2 otherwise. It is possible that the performance of the
NBS could have been improved in this study by ‘optimizing’ the
threshold selection with trial and error. An approach to avoid the
problem of threshold selection was recently proposed by Smith &
Nichols (2009) in the context of cluster-based statistics.
Schizophrenia findings

The dysconnected functional subnetwork identified in the group of
people with schizophrenia involved fronto-temporal dysconnectivity
of the left hemisphere, but also extended to incorporate, parietal and
occipital regions, in which the group with schizophrenia showed
reduced connectivity relative to controls. This finding is in line with
recent meta-analyses of structural imaging studies in schizophrenia,
suggesting that the most robust grey-matter changes occur in frontal,
temporal, subcortical and parietal regions, most prominently in the
left hemisphere (Ellison-Wright et al., 2008; Fornito et al., 2009). They
are also consistent with functional MRI evidence of disturbed fronto-
temporal connectivity in patients (Fletcher et al., 1999), which may
result from genetic risk for the disorder (Esslinger et al., 2009), and
diffusion MRI studies suggesting a disruption of tracts connecting
frontal, temporal and occipital regions (Ellison-Wright & Bullmore,
2009). Thus, while the interpretation of case-control differences in
resting-state functional MRI data may not always be straightforward
(Fornito & Bullmore, 2010), the NBS identified a core network of
reduced functional connectivity that is consistent with pathological
alterations reported in the literature, as identified using a variety of
imaging modalities.

Conclusion

This paper presented a new approach, called the network-based
statistic (NBS), to identify functional or structural connectivity
differences in neuroimaging data that is modeled as a network.
With the use of receiver operating characteristic (ROC) curves, the
NBS was shown to yield substantially greater statistical power than
generic procedures for controlling the FWE, as long as any connec-
tivity differences were structured in such a way that they formed
connected components. The fact that the NBS can only provide weak
control of the family-wise error rate was recognized as its main
disadvantage. The utility of the NBS was then demonstrated in the
context of a real case-control study involving 12 people with chronic
schizophrenia and 15 controls for which resting-state functional
MRI data was acquired. The NBS identified a single dysconnected
subnetwork in the group with schizophrenia that predominantly
comprised fronto-temporal and occipito-temporal dysconnections.
We believe the NBS will play an important role in the network
analysis of neuroimaging data.
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