
Relation Extraction Model

Relation: 
educated_at(x,?)

Entity: x = Turing

Sentence: “Alan 
Turing graduated 
from Princeton.”

Answer: Princeton

Relation Extraction (Slot Filling)



Relation Extraction Model

Relation: 
educated_at(x,?)

Entity: x = Turing

Sentence: “Turing 
was an English 
mathematician.”

Answer: <null>

Relation Extraction (Slot Filling)



Sentence: “Alan 
Turing graduated 
from Princeton.”

Answer: Princeton

Question:
“Where did Turing study?”

Reading Comprehension Model

Reading Comprehension



Relation: 
educated_at(x,?)

Entity: x = Turing

Sentence: “Alan 
Turing graduated 
from Princeton.”

Answer: Princeton

Reading Comprehension Model

Relation Extraction via Reading 
Comprehension



Relation: 
educated_at(x,?)

Entity: x = Turing

Sentence: “Alan 
Turing graduated 
from Princeton.”

Querification

Answer: Princeton

Question Template:
“Where did x study?”

Reading Comprehension Model

Relation Extraction via Reading 
Comprehension



Relation: 
educated_at(x,?)

Entity: x = Turing

Sentence: “Alan 
Turing graduated 
from Princeton.”

Querification

Answer: Princeton

Question Template:
“Where did x study?”

Question:
“Where did Turing study?”

Instantiation

Reading Comprehension Model

Relation Extraction via Reading 
Comprehension



Advantages



Advantage: Generalize to Unseen 
Questions
• Provides a natural-language API for defining and querying relations

educated_at(Turing, ?)

 

“Where did Turing study?”

 

“Which university did Turing go to?”



Advantage: Generalize to Unseen 
Relations
• Enables zero-shot relation extraction

Train:   educated_at, occupation, spouse, …

Test:   country

• Impossible for many relation-extraction systems



Challenges

• Translating relations into question templates
• Schema Querification

• Generated over 30,000,000 examples

• Modeling reading comprehension
• Plenty of research on SQuAD (Rajpurkar et al, EMNLP 2016)

• Model based on BiDAF (Seo et al, ICLR 2017)

• Predicting negative instances
• Modified BiDAF can indicate no answer



Challenges



Instance Querification

educated_at(Turing, Princeton) 
“Where did Turing study?”

“Where did Turing graduate from?”

“Which university did Turing go to?”

Problem: scaling to millions of examples

Large-Scale Simple Question Answering
with Memory Networks (Bordes et al, 2015)



Schema Querification: The 
Challenge

educated_at(x,?)     
“Where did x study?”

“Where did x graduate from?”

“Which university did x go to?”

Problem: not enough information



Schema Querification: Crowdsourcing 
Solution

1)  The wine is produced in the x region of France.

2)  x, the capital of Mexico, is the most populous city in North America.

3)  x is an unincorporated and organized territory of the United States.

4)  The x mountain range stretched across the United States and Canada.

“In which country is x located?”

Ask a single question about x whose answer is, 
for each sentence, the underlined spans.



Dataset

• Annotated 120 relations from WikiReading (Hewlett et al, ACL 2016)

• Collected 10 templates per relation with high agreement

• Generated over 30,000,000 reading comprehension examples

• Generated negative examples by mixing questions about same entity



Reading Comprehension Model: 
BiDAF
• Pre-trained word embeddings

• Character embeddings

• Bi-directional LSTMs for contextualization

• Special attention mechanism:
• Attends on both question and sentence

• Computed independently for each token in the sentence

Bi-Directional Attention Flow for
Machine Comprehension

(Seo et al, ICLR 2017)



Reading Comprehension Model: 
BiDAF
• Output Layer:

Alan   Turing   graduated   from  [Princeton] [<null>]

Begin:

End:

Bi-Directional Attention Flow for
Machine Comprehension

(Seo et al, ICLR 2017)
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Reading Comprehension Model: 
BiDAF
• Output Layer:

Alan   Turing   graduated   from  [Princeton] [<null>]

Begin:

End:

Bi-Directional Attention Flow for
Machine Comprehension

(Seo et al, ICLR 2017)
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Predicting Negative Instances

• Output Layer:

Alan   Turing   graduated   from  [Princeton] [<null>]

Begin:

End:
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0.9

Add <null> token to the sentence



Predicting Negative Instances

• Output Layer:

Alan   Turing   graduated   from  [Princeton] [<null>]

Begin:

End:

0.01 0.03 0.01 0.01 0.04

0.01 0.01 0.01 0.01 0.06

0.9

0.9

if argmax = <null>, predict no answer



Experiments



Generalizing to Unseen Questions

• Model is trained on several question templates per relation

“Where did Alan Turing study?”

“Where did Claude Shannon graduate from?”

“Which university did Edsger Dijkstra go to?”

• User asks about the relation using a different form

“Which university awarded Noam Chomsky a PhD?”



Generalizing to Unseen Questions

• Experiment: split the data by question templates

• Performance on seen question templates: 86.6% F1

• Performance on unseen question templates: 83.1% F1

• Our method is robust to new descriptions of existing relations



Generalizing to Unseen Relations

• Model is trained on several relations

“Where did Alan Turing study?” (educated_at)

“What is Ivanka Trump’s job?” (occupation)

“Who is Justin Trudeau married to?” (spouse)

• User asks about a new, unseen relation

“In which country is Seattle located?” (country)



Generalizing to Unseen Relations

• Experiment: split the data by relations

Results

• Random named-entity baseline: 12.2% F1

• Off-the-shelf RE system: impossible

• BiDAF w/ relation name as query: 33.4% F1

• BiDAF w/ querified relation as query: 39.6% F1

• BiDAF w/ + multiple questions at test: 41.1% F1



Why does a reading comprehension 
model
enable zero-shot relation extraction?

• It can learn answer types that are used across relations

Q: When was the Snow Hawk released? 

S:  The Snow Hawk is a 1925 film…

• It can detect paraphrases of relations

Q: Who started the Furstenberg China Factory?

S:  The Furstenberg China Factory was founded by Johann Georg…
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