Conside the ODE $$ y' = -y + 2 \exp(-t) \cos(2t) $$ with initial condition $$ y(0) = 0 $$ The exact solution is $$ y(t) = \exp(-t) \sin(2t) $$
import numpy as np
from matplotlib import pyplot as plt
Right hand side function
def f(t,y):
return -y + 2.0*np.exp(-t)*np.cos(2.0*t)
Exact solution
def yexact(t):
return np.exp(-t)*np.sin(2.0*t)
This implements Euler method $$ y_n = y_{n-1} + h f(t_{n-1},y_{n-1}) $$
def euler(t0,T,y0,h):
N = int((T-t0)/h)
y = np.zeros(N)
t = np.zeros(N)
y[0] = y0
t[0] = t0
for n in range(1,N):
y[n] = y[n-1] + h*f(t[n-1],y[n-1])
t[n] = t[n-1] + h
return t, y
t0 = 0
T = 10
h = 1.0/20.0
t,y = euler(t0,T,0,h)
te = np.linspace(t0,T,100)
ye = yexact(te)
plt.plot(t,y,te,ye,'--')
plt.legend(('Numerical','Exact'))
plt.xlabel('t')
plt.ylabel('y')
plt.title('Step size = ' + str(h))
<matplotlib.text.Text at 0x10e166310>
Study the effect of decreasing step size. The error is plotted in log scale.
hh = [1.0/2.0, 1.0/10.0, 1.0/50.0]
for h in hh:
t,y = euler(t0,T,0,h)
ye = yexact(t)
plt.semilogy(t,np.abs(y-ye))
plt.legend(hh)
plt.xlabel('t')
plt.ylabel('log(error)')