Algebra details and supplementary materials for "On Galerkin approximations for the quasigeostrophic equations" (submitted to JPO)

Cesar B Rocha, William R. Young, and Ian Grooms

March 24, 2015

1 A slightly different derivation of the enstrophy conservation with $\beta \neq 0$

An equivalent approach to derive the enstrophy conservation with non-zero β is to write the meridional PV flux as the divergence of an Eliassen-Palm vector (e.g. Vallis 2006)

$$
\begin{equation*}
v q=\boldsymbol{\nabla} \cdot \boldsymbol{E}, \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\boldsymbol{E} \stackrel{\text { def }}{=} \frac{1}{2}\left(v^{2}-u^{2}-\left(\frac{f_{0}}{N}\right)^{2} \vartheta^{2}\right) \hat{\boldsymbol{i}}-u v \hat{\boldsymbol{j}}+v \vartheta \hat{\boldsymbol{k}} . \tag{2}
\end{equation*}
$$

Using \boldsymbol{E}, the equation for enstrophy density is

$$
\begin{equation*}
\partial_{t} \frac{1}{2} q^{2}+\mathrm{J}\left(\psi, \frac{1}{2} q^{2}\right)+\beta \boldsymbol{\nabla} \cdot \boldsymbol{E}=0 . \tag{3}
\end{equation*}
$$

Integrating over the volume

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \int \frac{1}{2} q^{2} \mathrm{~d} V+\beta \int \underbrace{\left[\partial_{x} \psi \vartheta\right]_{z^{-}}^{z^{+}}}_{\boldsymbol{E} \hat{n}} \mathrm{~d} S=0 . \tag{4}
\end{equation*}
$$

Now take the QGPV equation evaluated at $z^{ \pm}$and cross-multiply with the boundary conditions to obtain

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \int q^{ \pm} \vartheta^{ \pm} \mathrm{d} S+\beta \int \vartheta^{ \pm} v^{ \pm} \mathrm{d} S=0 \tag{5}
\end{equation*}
$$

Eliminating the β terms between (4) and (5) we obtain the enstrophy conservation law

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\int \frac{1}{2} q^{2} \mathrm{~d} V-\int q^{+} \vartheta^{+}-q^{-} \vartheta^{-} \mathrm{d} S\right]=0 \tag{6}
\end{equation*}
$$

which corresponds to $\mathrm{M}(14)-(15){ }^{\text {| }}$

2 Approximation B: energy and enstrophy nonconservation

The total energy is approximation B is in the form

$$
\begin{equation*}
E_{\mathrm{N}}^{B} \stackrel{\text { def }}{=} E_{\phi}+E_{\sigma}+E_{\phi \sigma} . \tag{7}
\end{equation*}
$$

[^0]The three terms in (7) are

$$
\begin{gather*}
E_{\phi}=\frac{1}{h} \int \frac{1}{2}\left[\left|\nabla \phi_{\mathrm{N}}^{B}\right|^{2}+\left(\frac{f_{0}}{N}\right)^{2}\left(\partial_{z} \phi_{\mathrm{N}}^{B}\right)^{2}\right] \mathrm{d} V=\sum_{n=0}^{\mathrm{N}} \int \frac{1}{2}\left[\left|\nabla \breve{\phi}_{n}\right|^{2}+\kappa_{n}^{2} \breve{\phi}_{n}^{2}\right] \mathrm{d} S, \tag{8}\\
E_{\sigma}=\int \frac{1}{2}\left[|\nabla \sigma|^{2}+\left(\frac{f_{0}}{N}\right)^{2}\left(\partial_{z} \sigma\right)^{2}\right] \mathrm{d} V, \tag{9}
\end{gather*}
$$

and

$$
\begin{equation*}
E_{\phi \sigma}=\frac{1}{h} \int\left[\nabla \phi_{\mathrm{N}}^{B} \cdot \nabla \sigma+\left(\frac{f_{0}}{N}\right)^{2} \partial_{z} \phi_{\mathrm{N}}^{B} \partial_{z} \sigma\right] \mathrm{d} V=\sum_{n=0}^{\mathrm{N}} \int \breve{\sigma}_{n} \triangle_{n} \breve{\phi}_{n} \mathrm{~d} S . \tag{10}
\end{equation*}
$$

We form the energy equation by deriving evolution equations for each term in (7) separately. First, we multiply the modal equations $\mathrm{M}(54)$ by $-\breve{\phi}_{n}$, integrate over the horizontal surface, and sum on n, to obtain

$$
\begin{equation*}
\frac{\mathrm{d} E_{\phi}}{\mathrm{d} t}=\sum_{n=0}^{\mathrm{N}} \sum_{s=0}^{\mathrm{N}} \int \mathrm{p}_{n} \mathrm{p}_{s} \breve{\phi}_{n} \mathrm{~J}\left(\sigma, \triangle_{s} \breve{\phi}_{s}\right) \mathrm{d} V+\beta \sum_{n=0}^{\mathrm{N}} \int \breve{\phi}_{n} \partial_{x} \breve{\sigma}_{n} \mathrm{~d} S . \tag{11}
\end{equation*}
$$

To obtain the evolution of surface contribution to the total energy (9) we differentiate surface inversion relationship M (45) with respect to time, and then multiply by $-\sigma$, integrate over the volume, and combine with the boundary conditions, to obtain

$$
\begin{equation*}
\frac{\mathrm{d} E_{\sigma}}{\mathrm{d} t}=-\sum_{n=0}^{\mathrm{N}} \int\left[\mathrm{p}_{n}^{+} \sigma^{+} \mathrm{J}\left(\phi_{n}, \vartheta^{+}\right)-\mathrm{p}_{n}^{-} \sigma^{-} \mathrm{J}\left(\phi_{n}, \vartheta^{-}\right)\right] \mathrm{d} S . \tag{12}
\end{equation*}
$$

To obtain the evolution of the cross-term $E_{\phi \sigma}$ we first form an equation for $\breve{\sigma}_{n}$ by combining the boundary conditions

$$
\begin{gather*}
\partial_{t} \breve{\sigma}_{n}=-\frac{1}{h} \sum_{m=0}^{\mathrm{N}}\left[\mathrm{p}_{n}^{+} \mathrm{p}_{m}^{+} \triangle_{n}^{-1} \mathrm{~J}\left(\phi_{m}, \vartheta^{+}\right)-\mathrm{p}_{n}^{-} \mathrm{p}_{m}^{-} \triangle_{n}^{-1} \mathrm{~J}\left(\phi_{m}, \vartheta^{-}\right)\right] \\
+\frac{1}{h} \mathrm{p}_{n}^{+} \triangle_{n}^{-1} \mathrm{~J}\left(\sigma^{+}, \vartheta^{+}\right)-\frac{1}{h} \mathrm{p}_{n}^{-} \triangle_{n}^{-1} \mathrm{~J}\left(\sigma^{-}, \vartheta^{-}\right) \tag{13}
\end{gather*}
$$

where the n 'th mode Helmholtz operator is

$$
\begin{equation*}
\Delta_{n} \stackrel{\text { def }}{=} \triangle-\kappa_{n}^{2}, \tag{14}
\end{equation*}
$$

Now multiply (13) by $\triangle_{n} \breve{\phi}_{n}$, integrate over the horizontal surface, and sum over n, to obtain

$$
\begin{align*}
& \sum_{n=0}^{\mathrm{N}} \int \triangle_{n} \breve{\phi}_{n} \partial_{t} h \breve{\sigma}_{n} \mathrm{~d} S=-\sum_{n=0}^{\mathrm{N}} \sum_{m=0}^{\mathrm{N}} \int\left[\mathrm{p}_{n}^{+} \mathrm{p}_{m}^{+} \triangle_{n} \breve{\phi}_{n} \triangle_{n}^{-1} \mathrm{~J}\left(\breve{\phi}_{m}, \vartheta^{+}\right)\right. \\
& \left.-\mathrm{p}_{n}^{-} \mathrm{p}_{m}^{-} \triangle_{n} \breve{\phi}_{n} \triangle_{n}^{-1} \mathrm{~J}\left(\breve{\phi}_{m}, \vartheta^{-}\right)\right] \mathrm{d} S+\int\left[\mathrm{p}_{n}^{+} \triangle_{n} \breve{\phi}_{n} \triangle_{n}^{-1} \mathrm{~J}\left(\sigma^{+}, \vartheta^{+}\right)\right. \\
& \left.-\mathrm{p}_{n}^{-} \triangle_{n} \breve{\phi}_{n} \triangle_{n}^{-1} \mathrm{~J}\left(\sigma^{-}, \vartheta^{-}\right)\right] \mathrm{d} S . \tag{15}
\end{align*}
$$

The linear operator \triangle_{n} is self-adjoint so that

$$
\begin{equation*}
\int \triangle_{n}^{-1} \mathrm{~J}(A, B) \triangle_{n} C \mathrm{~d} S=\int C \mathrm{~J}(A, B) \mathrm{d} S . \tag{16}
\end{equation*}
$$

Hence the double sum terms vanish by skew-symmetry of the Jacobian, and we are left with

$$
\begin{equation*}
\sum_{n=0}^{\mathrm{N}} \int \triangle_{n} \breve{\phi}_{n} \partial_{t} h \breve{\sigma}_{n} \mathrm{~d} S=+\int\left[\mathrm{p}_{n}^{+} \breve{\phi}_{n} \mathrm{~J}\left(\sigma^{+}, \vartheta^{+}\right)-\mathrm{p}_{n}^{-} \breve{\phi}_{n} \mathrm{~J}\left(\sigma^{-}, \vartheta^{-}\right)\right] \mathrm{d} S \tag{17}
\end{equation*}
$$

We then multiply the modal equations $\mathrm{M}(54)$ by $-h \breve{\sigma}_{n}$ and add it to -17 to obtain

$$
\begin{align*}
\frac{\mathrm{d} E_{\phi \sigma}}{\mathrm{d} t}= & \sum_{n=0}^{\mathrm{N}} \sum_{m=0}^{\mathrm{N}} \sum_{s=0}^{\mathrm{N}} \Xi_{m n s} \int \breve{\sigma}_{n} \mathrm{~J}\left(\breve{\phi}_{n}, \triangle_{s} \breve{\phi}_{s}\right) \mathrm{d} S-\int\left[\mathrm{p}_{n}^{+} \breve{\phi}_{n} \mathrm{~J}\left(\sigma^{+}, \vartheta^{+}\right)-\mathrm{p}_{n}^{-} \breve{\phi}_{n} \mathrm{~J}\left(\sigma^{-}, \vartheta^{-}\right)\right] \mathrm{d} S \\
& +\sum_{n=0}^{\mathrm{N}} \sum_{s=0}^{\mathrm{N}} \int \mathrm{p}_{n} \mathrm{p}_{s} \breve{\sigma}_{n} \mathrm{~J}\left(\sigma, \triangle_{s} \breve{\phi}_{s}\right) \mathrm{d} V+\beta \sum_{n=0}^{\mathrm{N}} \int \breve{\sigma}_{n} \partial_{x} \breve{\phi}_{n} \mathrm{~d} S \tag{18}
\end{align*}
$$

Adding (11), (12), and (18) we finally obtain the energy equation in approximation B

$$
\begin{align*}
\frac{\mathrm{d} E_{\mathrm{N}}^{B}}{\mathrm{~d} t}=\sum_{n=0}^{\mathrm{N}} \sum_{s=0}^{\mathrm{N}} \int \mathrm{p}_{n} \mathrm{p}_{s} \breve{\phi}_{n} \mathrm{~J}\left(\sigma, \triangle_{s} \breve{\phi}_{s}\right) \mathrm{d} V & +\sum_{m=0}^{\mathrm{N}} \sum_{n=0}^{\mathrm{N}} \sum_{s=0}^{\mathrm{N}} \Xi_{m n s} \int \breve{\sigma}_{n} \mathrm{~J}\left(\breve{\phi}_{m}, \triangle_{s} \breve{\phi}_{s}\right) h \mathrm{~d} S \\
& +\sum_{n=0}^{\mathrm{N}} \sum_{s=0}^{\mathrm{N}} \int \mathrm{p}_{n} \mathrm{p}_{s} \breve{\sigma}_{n} \mathrm{~J}\left(\sigma, \triangle_{s} \breve{\phi}_{s}\right) \mathrm{d} V \tag{19}
\end{align*}
$$

2.0.1 The simplest model

The crudest approximation with non-zero surface buoyancy considers a barotropic interior dynamics $(\mathrm{N}=0): q_{\mathrm{N}}^{\mathrm{G}}=\breve{q}_{0}$ and $\phi_{\mathrm{N}}^{B}=\phi_{0}$. Notice that

$$
\begin{equation*}
\int_{z^{-}}^{z^{+}} \sigma \mathrm{d} z=h \breve{\sigma}_{0} \tag{20}
\end{equation*}
$$

Hence, the last term on the right-hand-side of 19 vanishes identically. Moreover, the first and second terms on the right-hand-side of 19 cancel out because $\Xi_{000}=1$. Thus, this simplest model conserves energy. The interior equation is

$$
\begin{equation*}
\partial_{t} \breve{q}_{0}+\mathrm{J}\left(\phi_{0}+\breve{\sigma}_{0}, \breve{q}_{0}\right)+\beta \partial_{x}\left(\phi_{0}+\breve{\sigma}_{0}\right)=0 \tag{21}
\end{equation*}
$$

where

$$
\begin{equation*}
\triangle \breve{\phi}_{0}=\breve{q}_{0} \quad \text { and } \quad \triangle \breve{\sigma}_{0}=-\frac{1}{h}\left(\vartheta^{+}-\vartheta^{-}\right) \tag{22}
\end{equation*}
$$

The boundary conditions are

$$
\begin{equation*}
\partial_{t} \vartheta^{ \pm}+\mathrm{J}\left(\phi_{0}+\sigma^{ \pm}, \vartheta^{ \pm}\right)=0 \tag{23}
\end{equation*}
$$

2.0.2 An example of energy non-conservation

As described in appendix A of Rocha et al., with richer interior dynamics, approximation B does not conserve energy. The simplest example with sheared interior dynamics is $\mathrm{N}=1$ with constant stratification: $q_{\mathrm{N}}^{\mathrm{G}}=\triangle_{0} \breve{\phi}_{0}+\sqrt{2} \triangle_{1} \breve{\phi}_{1} \cos (\pi z)$ and $\phi_{\mathrm{N}}^{B}=\phi_{0}+\sqrt{2} \phi_{1} \cos (\pi z)$. This is the "two surfaces and two modes" model of Tulloch \& Smith (2009). The only non-zero entries of the interaction tensor are $\Xi_{000}=\Xi_{011}=\Xi_{101}=\Xi_{110}=1$. Using this, and noticing that

$$
\begin{equation*}
\mathrm{p}_{0} \mathrm{p}_{1}=\mathrm{p}_{1} \quad \text { and } \quad \mathrm{p}_{1} \mathrm{p}_{1}=\mathrm{p}_{0}+\frac{\mathrm{p}_{2}}{\sqrt{2}} \tag{24}
\end{equation*}
$$

the energy equation 19 becomes, after many cancellations,

$$
\begin{equation*}
\frac{\mathrm{d} E_{1}^{B}}{\mathrm{~d} t}=\int\left[\phi_{1} \mathrm{~J}\left(\breve{\sigma}_{1}, \breve{q}_{1}\right)-\frac{1}{\sqrt{2}} \breve{q}_{1} \mathrm{~J}\left(\breve{\sigma}_{1}, \breve{\sigma}_{2}\right)\right] \mathrm{d} S \tag{25}
\end{equation*}
$$

where we considered $=h=1$ for simplicity. The choice made in appendix A of Rocha et al. is $\triangle_{1} \breve{\phi}_{1}=\lambda \phi_{1}$, where λ is a constant, so that the first term on the right-hand-side of (25) is identically zero. As for the surface streamfunction, we choose

$$
\begin{equation*}
\sigma=\frac{\cosh (z+1)}{\sinh 1} \cos x+\frac{\cosh z}{\sinh 1} \sin x \tag{26}
\end{equation*}
$$

Some useful intermediate results are

$$
\begin{equation*}
\breve{\sigma}_{1}=\int_{-1}^{0} \mathrm{p}_{1} \sigma \mathrm{~d} z=\frac{\sqrt{2}}{1+\pi^{2}}(\cos x-\sin y) \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
\breve{\sigma}_{2}=\int_{-1}^{0} \mathrm{p}_{2} \sigma \mathrm{~d} z=\frac{\sqrt{2}}{1+4 \pi^{2}}(\cos x+\sin y) \tag{28}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\mathrm{J}\left(\breve{\sigma}_{1}, \breve{\sigma}_{2}\right)=\frac{-4}{1+5 \pi^{2}+4 \pi^{4}} \sin x \cos y \tag{29}
\end{equation*}
$$

Using these results leads to the energy non-conservation results M (A10).

Enstrophy

To obtain an enstrophy equation for approximation B, we multiply the interior equations M (54) by $\triangle_{n} \breve{\phi}_{n}$ and integrate over the surface to obtain

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \sum_{n=0}^{\mathrm{N}} \int \frac{\left(\triangle_{n} \breve{\phi}_{n}\right)^{2}}{2} \mathrm{~d} S-\beta \sum_{n=0}^{\mathrm{N}} \int \triangle_{n} \breve{\sigma}_{n} \partial_{x} \breve{\phi}_{n} \mathrm{~d} S=0 \tag{30}
\end{equation*}
$$

The enstrophy

$$
\begin{equation*}
\sum_{n=0}^{\mathrm{N}} \int \frac{\left(\triangle_{n} \breve{\phi}_{n}\right)^{2}}{2} \mathrm{~d} S \tag{31}
\end{equation*}
$$

is conserved with $\beta=0$. For non-zero β, we attempt to obtain a conservation law by eliminating the β-term. First we form an equation for $\triangle_{n} \breve{\sigma}_{n}$ by combining the boundary conditions

$$
\begin{equation*}
\partial_{t} \triangle_{n} \breve{\sigma}_{n}-\frac{1}{h} \sum_{m=0}^{\mathrm{N}} \breve{q}_{n}\left[\left(\mathrm{p}_{n}^{+} \mathrm{J}\left(\sigma^{+}+\mathrm{p}_{m}^{+} \breve{\phi}_{m}, \vartheta^{+}\right)-\mathrm{p}_{n}^{-} \mathrm{J}\left(\sigma^{-}+\mathrm{p}_{m}^{-} \breve{\phi}_{m}, \vartheta^{-}\right)\right]=0\right. \tag{32}
\end{equation*}
$$

We then cross-multiply (32) with the modal equations M (54), integrate over the surface S, and sum on n, the resulting equation with 30 to eliminate β. The final result is

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} t} \sum_{n=0}^{\mathrm{N}} \frac{\left(\triangle_{n} \breve{\phi}_{n}\right)^{2}}{2}+\left(\triangle_{n} \breve{\sigma}_{n}\right) \breve{q}_{n} \mathrm{~d} S= \\
& \quad-\sum_{m=0}^{\mathrm{N}} \sum_{n=0}^{\mathrm{N}} \sum_{s=0}^{\mathrm{N}} \Xi_{m n s} \int \triangle_{n} \breve{\sigma}_{n} \mathrm{~J}\left(\breve{\phi}_{m}, \triangle_{s} \breve{\phi}_{s}\right) \mathrm{d} S-\sum_{n=0}^{\mathrm{N}} \frac{1}{h} \int \triangle_{n} \breve{\sigma}_{n} \mathrm{p}_{n} \mathrm{p}_{n} \mathrm{~J}\left(\sigma, \triangle_{s} \breve{\phi}_{s}\right) \mathrm{d} V \\
& \quad+\frac{1}{h} \sum_{n=0}^{\mathrm{N}} \sum_{m=0}^{\mathrm{N}} \breve{q}_{n}\left[\mathrm{p}_{n}^{+} \mathrm{J}\left(\sigma^{+}+\mathrm{p}_{m}^{+} \breve{\phi}_{m}, \vartheta^{+}\right)-\mathrm{p}_{n}^{-} \mathrm{J}\left(\sigma^{-}+\mathrm{p}_{m}^{-} \breve{\phi}_{m}, \vartheta^{-}\right)\right] \tag{33}
\end{align*}
$$

2.0.3 The simplest model

For the most crude truncation (33) becomes

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} t} \frac{\left(\triangle_{0} \breve{\phi}_{0}\right)^{2}}{2}-\frac{1}{h}\left(\vartheta^{+}-\vartheta^{-}\right) \triangle_{0} \breve{\phi}_{0} \mathrm{~d} S= \\
& \quad-\int \breve{q}_{0} \mathrm{~J}\left(\breve{\sigma}_{0}, \vartheta^{+}-\vartheta^{-}\right) \mathrm{d} S+\int \triangle_{0} \breve{\phi}_{0}\left[J\left(\sigma^{+}, \vartheta^{+}\right)-\mathrm{J}\left(\sigma^{-}, \vartheta^{-}\right)\right] \mathrm{d} S . \tag{34}
\end{align*}
$$

The right-hand-side of (34) is generally non-zero. We can always choose an initial condition for which enstrophy is guaranteed to grow or decay. Choosing

$$
\begin{equation*}
\sigma=\frac{\cosh [z+1]}{\sinh 1} \cos x+\frac{\cosh [2(z+1)]}{\sinh 2} \cos 2 y \tag{35}
\end{equation*}
$$

where obtain

$$
\begin{equation*}
\vartheta^{+}=\cos x+2 \cos 2 y \quad \text { and } \quad \vartheta^{-}=0 \tag{36}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{0}=\cos x+\frac{1}{2} \cos 2 y \tag{37}
\end{equation*}
$$

If we choose

$$
\begin{equation*}
\breve{q}_{0}=\sin x \sin 2 y, \tag{38}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\breve{q}_{0}^{2}}{2}-\frac{1}{h} \vartheta^{+} \breve{q}_{0} \mathrm{~d} S=\operatorname{coth} 1-\frac{1}{2} \operatorname{coth} 2-\frac{3}{4} \tag{39}
\end{equation*}
$$

after integrating over one period in both directions. Hence enstrophy in the form of $M(15)$ is not conserved in this simplest model, and we conclude that, with non-zero β, enstrophy is not conserved in approximation B.

3 Approximation C: enstrophy nonconservation

Enstrophy

To obtain an enstrophy conservation for approximation C, we multiply the modal equations M (57) by \breve{q}_{n}, integrate over the surface, and sum on n, to obtain

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \sum_{n=0}^{\mathrm{N}} \int \frac{\breve{q}_{n}^{2}}{2} \mathrm{~d} S-\beta \sum_{n=0}^{\mathrm{N}} \int \triangle_{n} \breve{\sigma}_{n} \partial_{x} \breve{\psi}_{n} \mathrm{~d} S=0 \tag{40}
\end{equation*}
$$

With $\beta=0$ the enstrophy

$$
\begin{equation*}
\sum_{n=0}^{\mathrm{N}} \int \frac{\breve{q}_{n}^{2}}{2} \tag{41}
\end{equation*}
$$

is conserved. For non-zero β we form an equation for $\triangle_{n} \breve{\sigma}_{n}$ by combining the boundary conditions

$$
\begin{equation*}
\partial_{t} \triangle_{n} \breve{\sigma}_{n}-\frac{1}{h} \sum_{m=0}^{\mathrm{N}} \mathrm{p}_{n}^{+} \mathbf{p}_{m}^{+} \mathrm{J}\left(\breve{\psi}_{m}, \vartheta^{+}\right)-\mathrm{p}_{n}^{-} \mathbf{p}_{m}^{-} \mathrm{J}\left(\breve{\psi}_{m}, \vartheta^{-}\right)=0 \tag{42}
\end{equation*}
$$

We then cross-multiply (42) with the modal equations, integrate over the surface, sum on n, and combine with (40) to eliminate β

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} t} \sum_{n=0}^{\mathrm{N}} \int \frac{\breve{q}_{n}^{2}}{2}+\breve{q}_{n} \triangle_{n} \breve{\sigma}_{n} \mathrm{~d} S=-\sum_{m=0}^{\mathrm{N}} \sum_{n=0}^{\mathrm{N}} \sum_{s=0}^{\mathrm{N}} \int \Xi_{m n s} \triangle_{n} \breve{\sigma}_{n} \mathrm{~J}\left(\breve{\psi}_{m}, \breve{q}_{s}\right) \\
& \quad+\sum_{m=0}^{\mathrm{N}} \sum_{n=0}^{\mathrm{N}} \frac{1}{h} \int \breve{q}_{n} \mathrm{p}_{n}^{+} \mathrm{p}_{m}^{+} \mathrm{J}\left(\breve{\psi}_{m}, \vartheta^{+}\right)-\breve{q}_{n} \mathrm{p}_{n}^{-} \mathrm{p}_{m}^{-} \mathrm{J}\left(\breve{\psi}_{m}, \vartheta^{-}\right) \tag{43}
\end{align*}
$$

The right-hand-side of (43) is only zero in very special cases.

3.0.4 The simplest model

Consider the most crude truncation $(\mathrm{N}=0)$. Because $\Xi_{000}=1$ and $p_{0}=1$, the terms on the second and third lines of (43) cancel each other, ensuring conservation of enstrophy with non-zero β

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \sum_{n=0}^{\mathrm{N}} \int \frac{\breve{q}_{0}^{2}}{2}-\frac{1}{h} \breve{q}_{0}\left(\vartheta^{+}-\vartheta^{-}\right) \mathrm{d} S=0 . \tag{44}
\end{equation*}
$$

This simplest model is a very special case in which the following buoyancy variance

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \sum_{n=0}^{\mathrm{N}} \int \frac{\left(\vartheta^{+}-\vartheta^{-}\right)^{2}}{2}=0 \tag{45}
\end{equation*}
$$

and the enstrophy

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \sum_{n=0}^{\mathrm{N}} \int \frac{\left(\triangle \breve{\psi}_{0}\right)^{2}}{2}=0 \tag{46}
\end{equation*}
$$

are conserved. The enstrophy conservation (44) follows directly from (45) and (46) and the inversion relationship

$$
\begin{equation*}
\breve{q}_{0}=\triangle \breve{\psi}_{0}+\frac{1}{h}\left(\vartheta^{+}-\vartheta^{-}\right) . \tag{47}
\end{equation*}
$$

In general, however, one cannot construct invariants analogous to (45) and 46), and the system does not conserves enstrophy with non-zero β.

3.0.5 An example of enstrophy nonconservation

Consider the simplest model with interior shear $(\mathrm{N}=1)$. With constant buoyancy frequency we obtain, after many cancellations,

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} t} \sum_{n=0}^{1} \int \frac{\breve{q}_{n}^{2}}{2}+\breve{q}_{n} \triangle_{n} \breve{\sigma}_{n} \mathrm{~d} S=-\frac{1}{h} \int \breve{q}_{1} \mathrm{~J}\left(\breve{\psi}_{1}, \vartheta^{+}-\vartheta^{-}\right) \mathrm{d} S= \\
& \quad \int\left(\vartheta^{+}-\vartheta^{-}\right) \mathrm{J}\left(\breve{\psi}_{1},\left(\Delta-\pi^{2}\right) \breve{\psi}_{1}\right) \mathrm{d} S+2 \sqrt{2} \int \vartheta^{+} \mathrm{J}\left(\breve{\psi}_{1}, \vartheta^{-}\right) \mathrm{d} S \tag{48}
\end{align*}
$$

where the last equality follows from using the inversion relationship.
We construct an example in which enstrophy is not conserved with non-zero β. For simplicity we choose $\breve{\psi}_{1}=\sin x$ so that the first integral on the second row of (48) vanishes identically. As for the surface fields, we choose

$$
\begin{equation*}
\vartheta^{+}=\cos x \cos y \text { and } \vartheta^{-}=\sin y . \tag{49}
\end{equation*}
$$

All fields are periodic with same period. Integrating (48) over one period we obtain

$$
\begin{equation*}
\int \vartheta^{+} \mathrm{J}\left(\breve{\psi}_{1}, \vartheta^{-}\right) \mathrm{d} S=\frac{1}{4} \neq 0 \tag{50}
\end{equation*}
$$

Thus enstrophy, in a form analogous to M (15), is not conserved in this simple example. We therefore conclude that enstrophy is not generally conserved in approximation C.

[^0]: ${ }^{1}$ Manuscript equations are denoted M \#.

