import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from tensorflow.examples.tutorials.mnist import input_data
C:\Users\Shin\Anaconda3\envs\tensorflow_windows\lib\site-packages\h5py\__init__.py:34: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`. from ._conv import register_converters as _register_converters
mnist = input_data.read_data_sets('./inputs/mnist')
# Resetting default graph, starting from scratch
tf.reset_default_graph()
epochs = 6000
batch_size = 64
n_noise = 200
learning_rate=0.00015
real_images = tf.placeholder(dtype=tf.float32, shape=[None, 28, 28, 1], name='real_images')
noise = tf.placeholder(dtype=tf.float32, shape=[None, n_noise])
# The keep_prob variable will be used by our dropout layers, which we introduce for more stable learning outcome
keep_prob = tf.placeholder(dtype=tf.float32, name='keep_prob')
is_training = tf.placeholder(dtype=tf.bool, name='is_training')
# Leaky Relu activation
# https://en.wikipedia.org/wiki/Rectifier_%28neural_networks%29#Potential_problems
def lrelu(x):
return tf.maximum(x, tf.multiply(x, 0.2))
# Binary cross entropy for descriminators
def binary_cross_entropy(x, z):
eps = 1e-12
return (-(x * tf.log(z + eps) + (1. - x) * tf.log(1. - z + eps)))
# Code by Parag Mital (github.com/pkmital/CADL)
def montage(images):
if isinstance(images, list):
images = np.array(images)
img_h = images.shape[1]
img_w = images.shape[2]
n_plots = int(np.ceil(np.sqrt(images.shape[0])))
m = np.ones((images.shape[1] * n_plots + n_plots + 1, images.shape[2] * n_plots + n_plots + 1)) * 0.5
for i in range(n_plots):
for j in range(n_plots):
this_filter = i * n_plots + j
if this_filter < images.shape[0]:
this_img = images[this_filter]
m[1 + i + i * img_h:1 + i + (i + 1) * img_h,
1 + j + j * img_w:1 + j + (j + 1) * img_w] = this_img
return m
Extracting ./inputs/mnist\train-images-idx3-ubyte.gz Extracting ./inputs/mnist\train-labels-idx1-ubyte.gz Extracting ./inputs/mnist\t10k-images-idx3-ubyte.gz Extracting ./inputs/mnist\t10k-labels-idx1-ubyte.gz
# It takes either real or fake MNIST image 28 x 28 in grayscale
# we use a sigmoid to make sure our output can be interpreted
# as the probability the input image is a real MNIST character.
def discriminator(real_images, reuse=None, keep_prob=keep_prob):
activation=lrelu
with tf.variable_scope('disc', reuse=reuse):
x = tf.reshape(real_images, shape=[-1, 28, 28, 1])
x = tf.layers.conv2d(x, kernel_size=5, filters=64, strides=2, padding='same', activation=activation)
x = tf.layers.dropout(x, keep_prob)
x = tf.layers.conv2d(x, kernel_size=5, filters=64, strides=1, padding='same', activation=activation)
x = tf.layers.dropout(x, keep_prob)
x = tf.layers.conv2d(x, kernel_size=5, filters=64, strides=1, padding='same', activation=activation)
x = tf.layers.dropout(x, keep_prob)
x = tf.contrib.layers.flatten(x)
x = tf.layers.dense(x, units=128, activation=activation)
x = tf.layers.dense(x, units=1, activation=tf.nn.sigmoid)
return x
File "<ipython-input-7-03e088156e11>", line 51 def discriminator(real_images, reuse=None, keep_prob=keep_prob): ^ IndentationError: expected an indented block
def generator(z, keep_prob=keep_prob, is_training=is_training):
activation = lrelu
momentum = 0.99
with tf.variable_scope('gen', reuse=None):
x = z
d1 = 4
d2 = 1
x = tf.layers.dense(x, units=d1 * d1 * d2, activation=activation)
x = tf.layers.dropout(x, keep_prob)
# https://www.tensorflow.org/api_docs/python/tf/contrib/layers/batch_norm
x = tf.contrib.layers.batch_norm(x, is_training=is_training, decay=momentum)
x = tf.reshape(x, shape=[-1, d1, d1, d2])
x = tf.image.resize_images(x, size=[7, 7])
x = tf.layers.conv2d_transpose(x, kernel_size=5, filters=64, strides=2, padding='same', activation=activation)
x = tf.layers.dropout(x, keep_prob)
x = tf.contrib.layers.batch_norm(x, is_training=is_training, decay=momentum)
x = tf.layers.conv2d_transpose(x, kernel_size=5, filters=64, strides=2, padding='same', activation=activation)
x = tf.layers.dropout(x, keep_prob)
x = tf.contrib.layers.batch_norm(x, is_training=is_training, decay=momentum)
x = tf.layers.conv2d_transpose(x, kernel_size=5, filters=64, strides=1, padding='same', activation=activation)
x = tf.layers.dropout(x, keep_prob)
x = tf.contrib.layers.batch_norm(x, is_training=is_training, decay=momentum)
x = tf.layers.conv2d_transpose(x, kernel_size=5, filters=1, strides=1, padding='same', activation=tf.nn.sigmoid)
return x
g = generator(noise, keep_prob, is_training)
d_real = discriminator(real_images)
d_fake = discriminator(g, reuse=True)
vars_g = [var for var in tf.trainable_variables() if 'gen' in var.name]
vars_d = [var for var in tf.trainable_variables() if 'disc' in var.name]
# Applying regularizers
d_reg = tf.contrib.layers.apply_regularization(tf.contrib.layers.l2_regularizer(1e-6), vars_d)
g_reg = tf.contrib.layers.apply_regularization(tf.contrib.layers.l2_regularizer(1e-6), vars_g)
loss_d_real = binary_cross_entropy(tf.ones_like(d_real), d_real)
loss_d_fake = binary_cross_entropy(tf.zeros_like(d_fake), d_fake)
loss_g = tf.reduce_mean(binary_cross_entropy(tf.ones_like(d_fake), d_fake))
loss_d = tf.reduce_mean(0.5 * (loss_d_real + loss_d_fake))
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
optimizer_d = tf.train.AdamOptimizer(learning_rate).minimize(loss_d + d_reg, var_list=vars_d)
# optimizer_d = tf.train.RMSPropOptimizer(learning_rate=0.00015).minimize(loss_d + d_reg, var_list=vars_d)
# optimizer_g = tf.train.RMSPropOptimizer(learning_rate=0.00015).minimize(loss_g + g_reg, var_list=vars_g)
optimizer_g = tf.train.AdamOptimizer(learning_rate).minimize(loss_g + g_reg, var_list=vars_g)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
checking units 16
samples = []
for i in range(epochs):
train_d = True
train_g = True
keep_prob_train = 0.6
# Creating noise
n = np.random.uniform(0.0, 1.0, [batch_size, n_noise]).astype(np.float32)
# batch = [np.reshape(b, [28, 28]) for b in mnist.train.next_batch(batch_size=batch_size)[0]]
batch_x, _ = mnist.train.next_batch(batch_size)
batch_x = np.reshape(batch_x, newshape=[-1, 28, 28, 1])
d_real_ls, d_fake_ls, g_ls, d_ls = sess.run(
[loss_d_real, loss_d_fake, loss_g, loss_d],
feed_dict={real_images: batch_x, noise: n, keep_prob: keep_prob_train, is_training: True}
)
d_real_ls = np.mean(d_real_ls)
d_fake_ls = np.mean(d_fake_ls)
g_ls = g_ls
d_ls = d_ls
if g_ls * 1.5 < d_ls:
train_g = False
pass
if d_ls * 2 < g_ls:
train_d = False
pass
if train_d:
sess.run(optimizer_d, feed_dict={noise: n, real_images: batch_x, keep_prob: keep_prob_train, is_training:True})
if train_g:
sess.run(optimizer_g, feed_dict={noise: n, keep_prob: keep_prob_train, is_training:True})
# Showing sample image
if not i % 50:
gen_sample = sess.run(g, feed_dict={noise: n, keep_prob: 1.0, is_training:False})
imgs = [img[:,:,0] for img in gen_sample]
m = montage(imgs)
gen_sample = m
plt.axis('off')
plt.imshow(gen_sample, cmap='gray')
plt.show()
(64, 28, 28, 1)
(64, 28, 28, 1) (64, 28, 28, 1) (64, 28, 28, 1) (64, 28, 28, 1) (64, 28, 28, 1) (64, 28, 28, 1) (64, 28, 28, 1) (64, 28, 28, 1) (64, 28, 28, 1) (64, 28, 28, 1)
--------------------------------------------------------------------------- KeyboardInterrupt Traceback (most recent call last) <ipython-input-22-de32e5cdffbe> in <module>() 31 sess.run(optimizer_d, feed_dict={noise: n, real_images: batch_x, keep_prob: keep_prob_train, is_training:True}) 32 if train_g: ---> 33 sess.run(optimizer_g, feed_dict={noise: n, keep_prob: keep_prob_train, is_training:True}) 34 35 # Showing sample image ~\Anaconda3\envs\tensorflow_windows\lib\site-packages\tensorflow\python\client\session.py in run(self, fetches, feed_dict, options, run_metadata) 776 try: 777 result = self._run(None, fetches, feed_dict, options_ptr, --> 778 run_metadata_ptr) 779 if run_metadata: 780 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr) ~\Anaconda3\envs\tensorflow_windows\lib\site-packages\tensorflow\python\client\session.py in _run(self, handle, fetches, feed_dict, options, run_metadata) 980 if final_fetches or final_targets: 981 results = self._do_run(handle, final_targets, final_fetches, --> 982 feed_dict_string, options, run_metadata) 983 else: 984 results = [] ~\Anaconda3\envs\tensorflow_windows\lib\site-packages\tensorflow\python\client\session.py in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata) 1030 if handle is None: 1031 return self._do_call(_run_fn, self._session, feed_dict, fetch_list, -> 1032 target_list, options, run_metadata) 1033 else: 1034 return self._do_call(_prun_fn, self._session, handle, feed_dict, ~\Anaconda3\envs\tensorflow_windows\lib\site-packages\tensorflow\python\client\session.py in _do_call(self, fn, *args) 1037 def _do_call(self, fn, *args): 1038 try: -> 1039 return fn(*args) 1040 except errors.OpError as e: 1041 message = compat.as_text(e.message) ~\Anaconda3\envs\tensorflow_windows\lib\site-packages\tensorflow\python\client\session.py in _run_fn(session, feed_dict, fetch_list, target_list, options, run_metadata) 1019 return tf_session.TF_Run(session, options, 1020 feed_dict, fetch_list, target_list, -> 1021 status, run_metadata) 1022 1023 def _prun_fn(session, handle, feed_dict, fetch_list): KeyboardInterrupt: