Now that we have seen how to construct the non-linear convection and diffusion examples, we can combine them to form Burgers' equations. We again create a set of coupled equations which are actually starting to form quite complicated stencil expressions, even if we are only using low-order discretizations.
Let's start with the definition fo the governing equations: $$ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = \nu \; \left(\frac{\partial ^2 u}{\partial x^2} + \frac{\partial ^2 u}{\partial y^2}\right)$$
$$ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = \nu \; \left(\frac{\partial ^2 v}{\partial x^2} + \frac{\partial ^2 v}{\partial y^2}\right)$$The discretized and rearranged form then looks like this:
\begin{aligned} u_{i,j}^{n+1} &= u_{i,j}^n - \frac{\Delta t}{\Delta x} u_{i,j}^n (u_{i,j}^n - u_{i-1,j}^n) - \frac{\Delta t}{\Delta y} v_{i,j}^n (u_{i,j}^n - u_{i,j-1}^n) \\ &+ \frac{\nu \Delta t}{\Delta x^2}(u_{i+1,j}^n-2u_{i,j}^n+u_{i-1,j}^n) + \frac{\nu \Delta t}{\Delta y^2} (u_{i,j+1}^n - 2u_{i,j}^n + u_{i,j+1}^n) \end{aligned}\begin{aligned} v_{i,j}^{n+1} &= v_{i,j}^n - \frac{\Delta t}{\Delta x} u_{i,j}^n (v_{i,j}^n - v_{i-1,j}^n) - \frac{\Delta t}{\Delta y} v_{i,j}^n (v_{i,j}^n - v_{i,j-1}^n) \\ &+ \frac{\nu \Delta t}{\Delta x^2}(v_{i+1,j}^n-2v_{i,j}^n+v_{i-1,j}^n) + \frac{\nu \Delta t}{\Delta y^2} (v_{i,j+1}^n - 2v_{i,j}^n + v_{i,j+1}^n) \end{aligned}Great. Now before we look at the Devito implementation, let's re-create the NumPy-based implementation from the original.
from examples.cfd import plot_field, init_hat
import numpy as np
%matplotlib inline
# Some variable declarations
nx = 41 # Grid size on x axis
ny = 41 # Grid size on y axis
batches = 5 # Batches of timesteps, increase number of batches to extend evolution in time
# A figure of the wave state will be produced for each batch.
batch_size = 640 # Number of timesteps for every batch
nt = batches*batch_size # Number of total timesteps
c = 1
dx = 2. / (nx - 1)
dy = 2. / (ny - 1)
sigma = .0009
nu = 0.01
dt = sigma * dx * dy / nu
#NBVAL_IGNORE_OUTPUT
# Assign initial conditions
u = np.empty((nx, ny))
v = np.empty((nx, ny))
init_hat(field=u, dx=dx, dy=dy, value=2.)
init_hat(field=v, dx=dx, dy=dy, value=2.)
plot_field(u)
#NBVAL_IGNORE_OUTPUT
for n in range(nt + 1): ##loop across number of time steps
un = u.copy()
vn = v.copy()
u[1:-1, 1:-1] = (un[1:-1, 1:-1] -
dt / dy * un[1:-1, 1:-1] *
(un[1:-1, 1:-1] - un[1:-1, 0:-2]) -
dt / dx * vn[1:-1, 1:-1] *
(un[1:-1, 1:-1] - un[0:-2, 1:-1]) +
nu * dt / dy**2 *
(un[1:-1,2:] - 2 * un[1:-1, 1:-1] + un[1:-1, 0:-2]) +
nu * dt / dx**2 *
(un[2:, 1:-1] - 2 * un[1:-1, 1:-1] + un[0:-2, 1:-1]))
v[1:-1, 1:-1] = (vn[1:-1, 1:-1] -
dt / dy * un[1:-1, 1:-1] *
(vn[1:-1, 1:-1] - vn[1:-1, 0:-2]) -
dt / dx * vn[1:-1, 1:-1] *
(vn[1:-1, 1:-1] - vn[0:-2, 1:-1]) +
nu * dt / dy**2 *
(vn[1:-1, 2:] - 2 * vn[1:-1, 1:-1] + vn[1:-1, 0:-2]) +
nu * dt / dx**2 *
(vn[2:, 1:-1] - 2 * vn[1:-1, 1:-1] + vn[0:-2, 1:-1]))
u[0, :] = 1
u[-1, :] = 1
u[:, 0] = 1
u[:, -1] = 1
v[0, :] = 1
v[-1, :] = 1
v[:, 0] = 1
v[:, -1] = 1
# A figure of the wave state will be produced for each batch
if (n%batch_size) == 0:
print ("Batch:",n/(batch_size))
plot_field(u)
Batch: 0.0
Batch: 1.0
Batch: 2.0
Batch: 3.0
Batch: 4.0
Batch: 5.0
Nice, our wave looks just like the original. Now we shall attempt to write our entire Burgers' equation operator in a single cell - but before we can demonstrate this, there is one slight problem.
The diffusion term in our equation requires a second-order space discretization on our velocity fields, which we set through the TimeFunction
constructor for $u$ and $v$. The TimeFunction
objects will store this discretisation information and use it as default whenever we use the shorthand notations for derivative, like u.dxl
or u.dyl
. For the advection term, however, we want to use a first-order discretization, which we now have to create by hand when combining terms with different stencil discretizations. To illustrate let's consider the following example:
from devito import Grid, TimeFunction, first_derivative, left
grid = Grid(shape=(nx, ny), extent=(2., 2.))
x, y = grid.dimensions
t = grid.stepping_dim
u1 = TimeFunction(name='u1', grid=grid, space_order=1)
print("Space order 1:\n%s\n" % u1.dxl)
u2 = TimeFunction(name='u2', grid=grid, space_order=2)
print("Space order 2:\n%s\n" % u2.dxl)
# We use u2 to create the explicit first-order derivative
u1_dx = first_derivative(u2, dim=x, side=left, fd_order=1)
print("Explicit space order 1:\n%s\n" % u1_dx)
Space order 1: Derivative(u1(t, x, y), x) Space order 2: Derivative(u2(t, x, y), x) Explicit space order 1: u2(t, x, y)/h_x - u2(t, x - h_x, y)/h_x
Ok, so by constructing derivative terms explicitly we again have full control of the spatial discretization - the power of symbolic computation. Armed with that trick, we can now build and execute our advection-diffusion operator from scratch in one cell.
#NBVAL_IGNORE_OUTPUT
from devito import Operator, Constant, Eq, solve
# Define our velocity fields and initialize with hat function
u = TimeFunction(name='u', grid=grid, space_order=2)
v = TimeFunction(name='v', grid=grid, space_order=2)
init_hat(field=u.data[0], dx=dx, dy=dy, value=2.)
init_hat(field=v.data[0], dx=dx, dy=dy, value=2.)
# Write down the equations with explicit backward differences
a = Constant(name='a')
u_dx = first_derivative(u, dim=x, side=left, fd_order=1)
u_dy = first_derivative(u, dim=y, side=left, fd_order=1)
v_dx = first_derivative(v, dim=x, side=left, fd_order=1)
v_dy = first_derivative(v, dim=y, side=left, fd_order=1)
eq_u = Eq(u.dt + u*u_dx + v*u_dy, a*u.laplace, subdomain=grid.interior)
eq_v = Eq(v.dt + u*v_dx + v*v_dy, a*v.laplace, subdomain=grid.interior)
# Let SymPy rearrange our stencils to form the update expressions
stencil_u = solve(eq_u, u.forward)
stencil_v = solve(eq_v, v.forward)
update_u = Eq(u.forward, stencil_u)
update_v = Eq(v.forward, stencil_v)
# Create Dirichlet BC expressions using the low-level API
bc_u = [Eq(u[t+1, 0, y], 1.)] # left
bc_u += [Eq(u[t+1, nx-1, y], 1.)] # right
bc_u += [Eq(u[t+1, x, ny-1], 1.)] # top
bc_u += [Eq(u[t+1, x, 0], 1.)] # bottom
bc_v = [Eq(v[t+1, 0, y], 1.)] # left
bc_v += [Eq(v[t+1, nx-1, y], 1.)] # right
bc_v += [Eq(v[t+1, x, ny-1], 1.)] # top
bc_v += [Eq(v[t+1, x, 0], 1.)] # bottom
# Create the operator
op = Operator([update_u, update_v] + bc_u + bc_v)
# Execute the operator for a number of timesteps
for batch_no in range(batches):
op(time=batch_size, dt=dt, a=nu)
print ("Batch:",batch_no+1)
plot_field(u.data[0])
Operator `Kernel` run in 0.01 s
Batch: 1
Operator `Kernel` run in 0.01 s
Batch: 2
Operator `Kernel` run in 0.01 s
Batch: 3
Operator `Kernel` run in 0.01 s
Batch: 4
Operator `Kernel` run in 0.01 s
Batch: 5
Following the non-linear convection example, we now rewrite this example in term of vectorial equation.
from devito import VectorTimeFunction, grad, div, NODE
x, y = grid.dimensions
# Reinitialise
U = VectorTimeFunction(name='U', grid=grid, space_order=2)
init_hat(field=U[0].data[0], dx=dx, dy=dy, value=2.)
init_hat(field=U[1].data[0], dx=dx, dy=dy, value=2.)
plot_field(U[1].data[0])
Boundary conditions
x, y = grid.dimensions
t = grid.stepping_dim
bc_U = [Eq(U[0][t+1, 0, y], 1.)] # left
bc_U += [Eq(U[0][t+1, nx-1, y], 1.)] # right
bc_U += [Eq(U[0][t+1, x, ny-1], 1.)] # top
bc_U += [Eq(U[0][t+1, x, 0], 1.)] # bottom
bc_U += [Eq(U[1][t+1, 0, y], 1.)] # left
bc_U += [Eq(U[1][t+1, nx-1, y], 1.)] # right
bc_U += [Eq(U[1][t+1, x, ny-1], 1.)] # top
bc_U += [Eq(U[1][t+1, x, 0], 1.)] # bottom
Reminder, our equations are thus:
$$ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = \nu \; \left(\frac{\partial ^2 u}{\partial x^2} + \frac{\partial ^2 u}{\partial y^2}\right)$$$$ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = \nu \; \left(\frac{\partial ^2 v}{\partial x^2} + \frac{\partial ^2 v}{\partial y^2}\right)$$# Now this is a trivial stencil so let's just write it directly
s = grid.time_dim.spacing
update_U = Eq(U.forward, U - s * (grad(U)*U - a * U.laplace), subdomain=grid.interior)
update_U
Inspecting the analytical equations above we can see that we have the update (stencil) as a vectorial equation once again.
We finally run the operator.
#NBVAL_IGNORE_OUTPUT
op = Operator([update_U] + bc_U)
# Execute the operator for a number of timesteps
for batch_no in range(batches):
op(time=batch_size, dt=dt, a=nu)
print ("Batch:",batch_no+1)
plot_field(U[0].data[0])
Operator `Kernel` run in 0.01 s
Batch: 1
Operator `Kernel` run in 0.01 s
Batch: 2
Operator `Kernel` run in 0.01 s
Batch: 3
Operator `Kernel` run in 0.01 s
Batch: 4
Operator `Kernel` run in 0.01 s
Batch: 5