This notebook was prepared by Donne Martin. Source and license info is on GitHub.

# Challenge Notebook¶

## Constraints¶

• Can we insert None values?
• No
• Can we assume we are working with valid integers?
• Yes
• Can we assume all left descendents <= n < all right descendents?
• Yes
• Do we have to keep track of the parent nodes?
• This is optional
• Can we assume this fits in memory?
• Yes

## Test Cases¶

### Insert¶

Insert will be tested through the following traversal:

### In-Order Traversal¶

• 5, 2, 8, 1, 3 -> 1, 2, 3, 5, 8
• 1, 2, 3, 4, 5 -> 1, 2, 3, 4, 5

If the root input is None, return a tree with the only element being the new root node.

You do not have to code the in-order traversal, it is part of the unit test.

## Algorithm¶

Refer to the Solution Notebook. If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start.

## Code¶

In [ ]:
class Node(object):

def __init__(self, data):
# TODO: Implement me
pass

class Bst(object):

def insert(self, data):
# TODO: Implement me
pass


## Unit Test¶

The following unit test is expected to fail until you solve the challenge.

In [ ]:
%run dfs.py

In [ ]:
%run ../utils/results.py

In [ ]:
# %load test_bst.py
import unittest

class TestTree(unittest.TestCase):

def __init__(self, *args, **kwargs):
super(TestTree, self).__init__()
self.results = Results()

def test_tree_one(self):
bst = Bst()
bst.insert(5)
bst.insert(2)
bst.insert(8)
bst.insert(1)
bst.insert(3)
self.assertEqual(str(self.results), '[1, 2, 3, 5, 8]')
self.results.clear_results()

def test_tree_two(self):
bst = Bst()
bst.insert(1)
bst.insert(2)
bst.insert(3)
bst.insert(4)
bst.insert(5)
self.assertEqual(str(self.results), '[1, 2, 3, 4, 5]')

print('Success: test_tree')

def main():
test = TestTree()
test.test_tree_one()
test.test_tree_two()

if __name__ == '__main__':
main()


## Solution Notebook¶

Review the Solution Notebook for a discussion on algorithms and code solutions.