Utpal Kumar, Feb 2022
python -m venv geoviz
source geoviz/bin/activate
pip install pygmt scipy #requires GMT installation for execution
conda create --name geoviz --channel conda-forge pandas pygmt scipy jupyter notebook
import pygmt
import pandas as pd
import numpy as np
import xarray as xr
from scipy.interpolate import griddata
#define etopo data file
# topo_data = 'path_to_local_data_file'
topo_data = '@earth_relief_30s' #30 arc second global relief (SRTM15+V2.1 @ 1.0 km)
# topo_data = '@earth_relief_15s' #15 arc second global relief (SRTM15+V2.1)
# topo_data = '@earth_relief_03s' #3 arc second global relief (SRTM3S)
# define plot geographical range
minlon, maxlon = 60, 95
minlat, maxlat = 0, 25
# Visualization
fig = pygmt.Figure()
# make color pallets
pygmt.makecpt(
cmap='topo',
series='-8000/8000/1000',
continuous=True
)
# plot high res topography
fig.grdimage(
grid=topo_data,
region=[minlon, maxlon, minlat, maxlat],
projection='M4i',
shading=True,
frame=True
)
# plot continents, shorelines, rivers, and borders
fig.coast(
region=[minlon, maxlon, minlat, maxlat],
projection='M4i',
shorelines=True,
frame=True
)
# plot the topographic contour lines
fig.grdcontour(
grid=topo_data,
interval=4000,
annotation="4000+f6p",
limit="-8000/0", #to only display it below
pen="a0.15p"
)
# Plot colorbar
fig.colorbar(
frame='+l"Topography"',
# position="x11.5c/6.6c+w6c+jTC+v" #for vertical colorbar
)
# save figure
save_fig = 0
if not save_fig:
fig.show()
#fig.show(method='external') #open with the default pdf reader
else:
fig.savefig("topo-plot.png", crop=True, dpi=300, transparent=True)
# fig.savefig("topo-plot.pdf", crop=True, dpi=720)
print('Figure saved!')
## Generate fake coordinates in the range for plotting
lons = minlon + np.random.rand(10)*(maxlon-minlon)
lats = minlat + np.random.rand(10)*(maxlat-minlat)
# define plot geographical range
minlon, maxlon = 60, 95
minlat, maxlat = 0, 25
# Visualization
fig = pygmt.Figure()
# make color pallets
pygmt.makecpt(
cmap='topo',
series='-8000/8000/1000',
continuous=True
)
# plot high res topography
fig.grdimage(
grid=topo_data,
region=[minlon, maxlon, minlat, maxlat],
projection='M4i',
shading=True,
frame=True
)
# plot continents, shorelines, rivers, and borders
fig.coast(
region=[minlon, maxlon, minlat, maxlat],
projection='M4i',
shorelines=True,
frame=True
)
# plot the topographic contour lines
fig.grdcontour(
grid=topo_data,
interval=4000,
annotation="4000+f6p",
limit="-8000/0", #to only display it only for the regions below the shorelines
pen="a0.15p"
)
# plot data points
fig.plot(
x=lons,
y=lats,
style='c0.1i',
color='red',
pen='black',
label='something',
)
# save figure
fig.show()
#fig.show(method='external') #open with the default pdf reader
minlon, maxlon = 70, 100
minlat, maxlat = 0, 35
## Generate fake coordinates in the range for plotting
num_fm = 15
lons = minlon + np.random.rand(num_fm)*(maxlon-minlon)
lats = minlat + np.random.rand(num_fm)*(maxlat-minlat)
strikes = np.random.randint(low = 0, high = 360, size = num_fm)
dips = np.random.randint(low = 0, high = 90, size = num_fm)
rakes = np.random.randint(low = 0, high = 360, size = num_fm)
magnitudes = np.random.randint(low = 5, high = 9, size = num_fm)
fig = pygmt.Figure()
# make color pallets
pygmt.makecpt(
cmap='topo',
series='-8000/11000/1000',
continuous=True
)
#plot high res topography
fig.grdimage(
grid=topo_data,
region='IN',
projection='M4i',
shading=True,
frame=True
)
fig.coast( region='IN',
projection='M4i',
frame=True,
shorelines=True,
borders=1, #political boundary
)
for lon, lat, st, dp, rk, mg in zip(lons, lats, strikes, dips, rakes, magnitudes):
with pygmt.helpers.GMTTempFile() as temp_file:
with open(temp_file.name, 'w') as f:
f.write(f'{lon} {lat} 0 {st} {dp} {rk} {mg} 0 0') #moment tensor: lon, lat, depth, strike, dip, rake, magnitude
with pygmt.clib.Session() as session:
session.call_module('meca', f'{temp_file.name} -Sa0.2i')
fig.show()
# Define geographical range
minlon, maxlon = -180, -20
minlat, maxlat = 0, 90
## Read GCMT sol
df_gcmt = pd.read_csv('gcmt_sol2.csv')
# ## Subset the data for the given geographical range (will make the program a bit faster to process)
# df_gcmt = df_gcmt[(df_gcmt['evlon'] >= minlon) & (df_gcmt['evlon'] <= maxlon) \
# & (df_gcmt['evlat'] >= minlat) & (df_gcmt['evlat'] <= maxlat)]
df_gcmt = df_gcmt[['evmag', 'evlat', 'evlon', 'evdep', 'm_rr','m_tt', 'm_pp', 'm_rt', 'm_rp', 'm_tp']]
df_gcmt.head()
evmag | evlat | evlon | evdep | m_rr | m_tt | m_pp | m_rt | m_rp | m_tp | |
---|---|---|---|---|---|---|---|---|---|---|
0 | 7.47 | 15.14 | -89.78 | 16.3 | -3.500000e+26 | -7.800000e+26 | 1.120000e+27 | 3.800000e+26 | -4.700000e+26 | 1.670000e+27 |
1 | 5.97 | 51.63 | -130.93 | 22.5 | -1.700000e+24 | -1.600000e+24 | 3.300000e+24 | 1.800000e+24 | -1.600000e+24 | 1.080000e+25 |
2 | 6.60 | 3.87 | -85.80 | 17.5 | -1.580000e+25 | 7.130000e+25 | -5.550000e+25 | -2.110000e+25 | -1.500000e+24 | 7.460000e+25 |
3 | 6.63 | 0.79 | -79.89 | 19.4 | 5.880000e+25 | 1.900000e+24 | -6.070000e+25 | 3.750000e+25 | -8.540000e+25 | -1.480000e+25 |
4 | 6.42 | 17.22 | -100.91 | 29.0 | 3.200000e+25 | -2.730000e+25 | -4.700000e+24 | 3.880000e+25 | -1.970000e+25 | 1.130000e+25 |
fig = pygmt.Figure()
fig.basemap(region=[minlon, maxlon, minlat, maxlat], projection="Poly/4i", frame=True)
fig.coast(
land="lightgrey",
water="white",
shorelines="0.1p",
frame="WSNE",
resolution='h',
area_thresh=10000
)
exponent = 16
factor = 10**exponent
#plotting moment tensor sols
for irow in range(len(df_gcmt)):
# print(f"{irow}/{len(df_gcmt)-1}")
m_rr = float(df_gcmt.loc[irow,'m_rr'])/factor
m_tt = float(df_gcmt.loc[irow,'m_tt'])/factor
m_pp = float(df_gcmt.loc[irow,'m_pp'])/factor
m_rt = float(df_gcmt.loc[irow,'m_rt'])/factor
m_rp = float(df_gcmt.loc[irow,'m_rp'])/factor
m_tp = float(df_gcmt.loc[irow,'m_tp'])/factor
evmag = float(df_gcmt.loc[irow,'evmag']) * 0.02
evdep = float(df_gcmt.loc[irow,'evdep'])
lat = float(df_gcmt.loc[irow,'evlat'])
lon = float(df_gcmt.loc[irow,'evlon'])
# store focal mechanisms parameters in a dict
focal_mechanism = dict(mrr=m_rr, mtt=m_tt, mff=m_pp, mrt=m_rt, mrf=m_rp, mtf=m_tp, exponent=exponent)
fig.meca(focal_mechanism, scale=f"{evmag}i", longitude=lon, latitude=lat, depth=evdep,G='blue')
fig.show()
!head -3 dcg_080
116.777003 20.317177 0.000 0.000 116.787003 20.317177 -0.005 -0.000 116.797003 20.317177 -0.010 -0.000
datafile_dcg='dcg_080'
## Read perturbation data
df=pd.read_csv(datafile_dcg,delimiter='\s+', names=['longitude','latitude','pert', 'error'])
lons0=np.array(df['longitude'])
lats0=np.array(df['latitude'])
data=np.array(df['pert'])
coordinates0 = np.column_stack((lons0,lats0))
## Create structured data for plotting
minlon, maxlon = 120., 122.1
minlat, maxlat = 21.8, 25.6
step = 0.01
lons = np.arange(minlon, maxlon, step)
lats = np.arange(minlat, maxlat, step)
## interpolate data on spatial grid
xintrp, yintrp = np.meshgrid(lons, lats)
z1 = griddata(coordinates0, data, (xintrp, yintrp), method='cubic') #cubic interpolation
xintrp = np.array(xintrp, dtype=np.float32)
yintrp = np.array(yintrp, dtype=np.float32)
## xarray dataarray for plotting using pygmt
da = xr.DataArray(z1,dims=("lat", "long"),coords={"long": lons, "lat": lats},)
frame = ["a1f0.25", "WSen"]
# Visualization
fig = pygmt.Figure()
# make color pallets
lim=abs(max(data.min(),data.max()))
# print(f'{data.min():.2f}/{data.max():.2f}')
pygmt.makecpt(
cmap='red,white,blue',
# series=f'{data.min()}/{data.max()}/0.01',
series=f'-{lim}/{lim}/0.01',
continuous=True
)
#plot high res topography
fig.grdimage(
region=[minlon, maxlon, minlat, maxlat],
grid=da,
projection='M2i',
interpolation='l'
)
# plot coastlines
fig.coast(
region=[minlon, maxlon, minlat, maxlat],
shorelines=True,
water="#add8e6",
frame=frame,
area_thresh=1000
)
## Plot colorbar
# Default is horizontal colorbar
fig.colorbar(
frame='+l"Velocity anomaly (%)"'
)
fig.show()