Lab 7: Controls Part 1

EECS 16B Fall 2022

Slides: http://links.eecs16b.org/lab7-slides

Lab 7 Overview

- Make your car drive straight!
- Open-Loop Control
 - Open loop simulation with/without model mismatch
 - Jolt value calculations
- Closed-Loop Control
 - Simulation + feedback gain f-value tuning
 - Steady-state error correction
- Next week: Turning!

System ID → Open Loop Control

$$v_{L}[i] = d_{L}[i+1] - d_{L}[i] = \theta_{L}u_{L}[i] - \beta_{L}$$
$$v_{R}[i] = d_{R}[i+1] - d_{R}[i] = \theta_{R}u_{R}[i] - \beta_{R}$$

- Last week, we:
 - \circ measured v, we knew u
 - \circ ~ We found $\theta_{_{LR}}$ and $\beta_{_{LR}}$ from least squares
 - Determined operating velocity point v*
- Given some target velocity v, what input u do we need?
 - Open Loop Control: solve the above equations for u

Problems with Open Loop

Does open loop work well for systems with disturbances? Why or why not?

Problems with Open Loop

- Will not correct for disturbance/noise (marginally stable)
- Assumes θ , β are the actual θ , β of the wheels
 - \circ $\,$ Any error will build up, preventing the car from going straight

Closed Loop Intuition

- Introduce an error term that indicates the car's trajectory
 - Negative feedback allows us to correct for disturbance
- Assuming perfect model, will cause delta to converge to 0
- With model mismatch, delta converges to non-zero value
 - Steady-state error

Closed Loop Equations

• Introduce an error term:

$$\delta[i] = d_{L}[i] - d_{R}[i]$$

• The wheel/motor models become

$$\begin{aligned} d_{L}[i+1] &= d_{L}[i] + \Theta_{L}u_{L}[i] - \beta_{L} - f_{L}\delta[i] \\ d_{R}[i+1] &= d_{R}[i] + \Theta_{R}u_{R}[i] - \beta_{R} + f_{R}\delta[i] \end{aligned}$$

• Convention: f > 0

Closed Loop Visualization for finding u

Closed Loop Analysis

- What's the error after one step?
 - $\circ \quad \delta[i+1] = d_{L}[i+1] d_{R}[i+1]$
 - \circ Plug in for d[i+1] (remember v[i] = d[i + 1] d[i])
 - $\circ \quad \delta[i+1] = v^* f_L \delta[i] + d_L[i] (v^* + f_R \delta[i] + d_R[i])$
 - Simplify
 - \circ δ[i+1] = δ[i] (1 f_L f_R)
- Stability Analysis:
 - For discrete-time systems, we want $\lambda \in (-1, 1)$.
 - If λ < 0, if f-values are too large, we will see oscillatory behavior (over-correction)

Tips and Tricks

- Don't guess f-values, this will take you forever!
 - Make educated decisions on how to change your f values from iterations of testing.
 - \circ If you car is turning left, how should you change f₁ and f_R to fix it?
- Data is stored in RAM, just like last lab, so make sure you keep the 9V plugged in when you plug the USB into your computer

Common Bugs

- Double check all closed-loop equations
 - Minus sign before f
 - \circ Plus sign before f_R
- If a wheel jolts and stops moving:
 - 1. Double check that all pins (motor and encoder) you are using are correctly defined in the Arduino code
 - 2. Rerun encoder tests from System ID to make sure encoders are still working
- If motors are no longer running, rerun the encoder test from last lab

Lab 7 Checkoff

- Our definition of "straight" is based on the floor tiling in Cory:
 - Inside Cory 125 (1x4 tiles)
 - Outside Cory 125 (3 x 11 on black)
 - Side entrance hallway, from the pink line to the red line (2 x 7 tiles)

Important Forms/Links

- Help request form: <u>https://eecs16b.org/lab-help</u>
- Checkoff request form: <u>https://eecs16b.org/lab-checkoff</u>
- Extension Requests: <u>https://eecs16b.org/extensions</u>
- Makeup Lab: <u>https://makeup.eecs16b.org</u>
- Slides: links.eecs16b.org/lab7-slides
- Anon Feedback: <u>https://eecs16b.org/lab-anon-feedback</u>
- Lab Grades error: <u>https://links.eecs16b.org/lab-checkoff-error</u>