This code was used for analysis and visualization of course-related data from OCEAN 215 (Methods of oceanographic data analysis), taught in Autumn 2020 at the University of Washington. The notebook requires an Excel data file titled All OCEAN 215 data deidentified.xlsx
(available upon reasonable request by email) containing anonymized metrics from the course.
For questions regarding the code, please contact Ethan C. Campbell at ethancc@uw.edu.
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import matplotlib.ticker as mtick
import scipy.stats as stats
from datetime import datetime, timedelta
# Give Colab access to Google Drive
from google.colab import drive, auth
drive.mount('/content/drive')
# If needed to reload updated files:
# drive.mount('/content/drive',force_remount=True)
Mounted at /content/drive
# Filepaths
filepath = '/content/drive/MyDrive/OCEAN 215 - Autumn \'20/Instructor documents/Paper/'
export_to = filepath + 'Current versions of plots/'
# Main data sheet, with rows by student
main_df = pd.read_excel(filepath + 'All OCEAN 215 data deidentified.xlsx',sheet_name='By student',
index_col='ID No.',na_values='NaN')
# Panopto data sheet (by session)
panopto_session_df = pd.read_excel(filepath + 'All OCEAN 215 data deidentified.xlsx',sheet_name='Panopto - by session',
na_values='NaN')
# Panopto data sheet (by video)
panopto_video_df = pd.read_excel(filepath + 'All OCEAN 215 data deidentified.xlsx',sheet_name='Panopto - by video',
na_values='NaN')
# Panopto video info
panopto_info_df = pd.read_excel(filepath + 'All OCEAN 215 data deidentified.xlsx',sheet_name='Panopto - video info',
index_col='Video name')
# Piazza data sheet (time series)
piazza_series_df = pd.read_excel(filepath + 'All OCEAN 215 data deidentified.xlsx',sheet_name='Piazza - time series',
na_values='NaN',index_col='Date')
# Survey data (using static Excel version of spreadsheet)
survey_df = pd.read_excel(filepath + 'All OCEAN 215 data deidentified.xlsx',sheet_name='Survey categorization')
# Mid-quarter/final course evaluations
eval_df = pd.read_excel(filepath + 'All OCEAN 215 data deidentified.xlsx',sheet_name='Course evaluations',
index_col=[0,1,2])
# Dichotomized by positive/negative responses
survey_pos_only = survey_df.iloc[0][3:]
survey_neg_only = survey_df.iloc[1][3:]
# Further divided by mid-quarter vs. end-of-quarter
survey_pos_mid = survey_df.iloc[3][3:]
survey_neg_mid = survey_df.iloc[4][3:]
survey_pos_final = survey_df.iloc[5][3:]
survey_neg_final = survey_df.iloc[6][3:]
# Sum of positive and negative responses
survey_sum = survey_pos_only + survey_neg_only
# Sort order from high to low
# (Note: manual re-ordering of entries with equal values is for aesthetics; delete if updating categorizations)
sort_indices = survey_sum.values.argsort()[::-1]
sort_indices = np.array([ 3, 6, 1, 9, 0, 8, 10, 2, 11, 7, 5, 4])
# Sort sums
survey_pos_sorted = survey_pos_only[sort_indices]
survey_neg_sorted = survey_neg_only[sort_indices]
survey_pos_mid_sorted = survey_pos_mid[sort_indices]
survey_neg_mid_sorted = survey_neg_mid[sort_indices]
survey_pos_final_sorted = survey_pos_final[sort_indices]
survey_neg_final_sorted = survey_neg_final[sort_indices]
# Labels
labels = survey_pos_sorted.keys().to_list()
labels[labels.index('Piazza')] \
= 'Online Q&A forum (Piazza)'
labels[labels.index('Recorded lesson videos')] \
= 'Flipped lesson videos (Panopto)'
labels[labels.index('Slide decks from recorded lessons')] \
= 'Slide decks from flipped lessons'
labels[labels.index('In-class tutorials, activities, and live coding')] \
= 'In-class tutorials, activities,\nand live coding'
labels[labels.index('Encouragement to use online resources / learn beyond class topics')] \
= 'Encouragement to use online resources /\nlearn beyond class topics'
labels[labels.index('Group work in breakout rooms during class')] \
= 'Group work in breakout rooms\nduring class'
labels[labels.index('Desire for more low-stakes opportunities to practice coding')] \
= 'Desire for more low-stakes\nopportunities to practice coding'
# Plot
plt.figure(figsize=(7.5,6),facecolor='w',dpi=450)
plt.barh(y=-1*np.arange(len(survey_pos_sorted)),width=survey_pos_sorted.values,tick_label=labels,color='navy',zorder=3)
plt.barh(y=-1*np.arange(len(survey_pos_sorted)),width=survey_neg_sorted.values,color='firebrick',zorder=3)
plt.rcParams['hatch.color'] = 'w'
plt.barh(y=-1*np.arange(len(survey_pos_sorted)),width=survey_pos_mid_sorted.values,color='navy',hatch='////',zorder=4)
plt.barh(y=-1*np.arange(len(survey_pos_sorted)),width=survey_neg_mid_sorted.values,color='firebrick',hatch='////',zorder=4)
plt.barh(y=np.NaN,width=0,color='k',hatch='////',label='Mid-quarter\nevaluations')
plt.barh(y=np.NaN,width=0,color='k',label='End-of-quarter\nevaluations')
plt.gca().yaxis.set_label_position('right')
plt.gca().yaxis.tick_right()
save_ylim = plt.ylim()
plt.plot([0,0],save_ylim,c='k',zorder=4)
plt.ylim([save_ylim[0]+0.5,save_ylim[1]-0.5])
plt.grid(alpha=0.5,zorder=1)
plt.legend(loc='upper left',bbox_to_anchor=(0.0,1.02),frameon=False,fontsize='medium')
plt.title('Responses to mid-quarter and final course evaluations')
plt.xlabel('Number of generally appreciative (positive) or critical (negative) comments')
plt.gca().spines['right'].set_position(('outward',5))
plt.gca().spines['bottom'].set_position(('outward',5))
plt.gca().spines['left'].set_visible(False)
plt.gca().spines['top'].set_visible(False)
plt.savefig(export_to + 'Survey categorization (updated).pdf',bbox_inches='tight')
# Key metrics
all_ids = main_df.index.values
num_students = len(all_ids)
all_video_names = np.unique(panopto_video_df['Session Name'].values)
video_median_datetimes = np.array([panopto_session_df['Timestamp'][panopto_session_df['Session Name'] == video_name].quantile(0.5,interpolation='midpoint')
for video_name in all_video_names])
video_due_datetimes = panopto_info_df['Class date and time to be watched by']
panopto_info_df['Median watch datetime'] = video_median_datetimes
panopto_info_df['Due date minus median watch datetime'] = (video_due_datetimes - video_median_datetimes)
# Calculate average percent Panopto completion by video
student_vs_video_completion = pd.pivot_table(panopto_video_df,values='Percent Completed',index=['ID No.'],columns=['Session Name'],fill_value=0)
# Calculate average percent Panopto completion by lesson (which can include multiple videos; allowing this to be > 100%)
panopto_video_df['Lesson number'] = panopto_info_df['Lesson number'].loc[panopto_video_df['Session Name']].values
total_mins_delivered_by_lesson_and_student = panopto_video_df[['Lesson number','Minutes Delivered','ID No.']].groupby(['ID No.','Lesson number']).sum()
student_vs_lesson_minutes_delivered = pd.pivot_table(total_mins_delivered_by_lesson_and_student,values='Minutes Delivered',index=['ID No.'],columns=['Lesson number'],fill_value=0)
video_average_completion = student_vs_video_completion.mean(axis=0)
video_median_completion = student_vs_video_completion.median(axis=0)
video_iqr25_completion = student_vs_video_completion.quantile(axis=0,q=0.25)
video_iqr75_completion = student_vs_video_completion.quantile(axis=0,q=0.75)
video_average_completion_sorted_by_median_datetime = pd.Series(index=video_median_datetimes,data=video_average_completion.values).sort_index()
video_median_completion_sorted_by_median_datetime = pd.Series(index=video_median_datetimes,data=video_median_completion.values).sort_index()
video_iqr25_completion_sorted_by_median_datetime = pd.Series(index=video_median_datetimes,data=video_iqr25_completion.values).sort_index()
video_iqr75_completion_sorted_by_median_datetime = pd.Series(index=video_median_datetimes,data=video_iqr75_completion.values).sort_index()
video_completion_weekly_average = video_average_completion_sorted_by_median_datetime.resample('W-SAT').mean().shift(periods=-3,freq='D').dropna()
video_completion_weekly_median = video_median_completion_sorted_by_median_datetime.resample('W-SAT').mean().shift(periods=-3,freq='D').dropna()
video_completion_weekly_iqr25 = video_iqr25_completion_sorted_by_median_datetime.resample('W-SAT').mean().shift(periods=-3,freq='D').dropna()
video_completion_weekly_iqr75 = video_iqr75_completion_sorted_by_median_datetime.resample('W-SAT').mean().shift(periods=-3,freq='D').dropna()
<ipython-input-4-f9265ad65189>:9: PerformanceWarning: Adding/subtracting object-dtype array to DatetimeArray not vectorized. panopto_info_df['Due date minus median watch datetime'] = (video_due_datetimes - video_median_datetimes)
# Usage time series from Piazza metrics
piazza_daily_users_smoothed = piazza_series_df['Unique users per day'].rolling(window=3,center=True).mean()
piazza_users_per_week = piazza_series_df['Unique users per day'].resample('W-SAT').sum().shift(periods=-3,freq='D')
# Post frequency compiled by hand from Piazza
#
# "Daily questions and notes" includes questions and notes, and excludes:
# - Posts that counted as an assignment (e.g. A#0 intro posts, final project check-ins)
# - Questions or notes posted by instructors (e.g. A#0 template, final project templates)
# "Daily answers and comments" includes answers and comments, and excludes:
# - Comments for an assignment (e.g. final project check-in responses, final project peer reviews)
# - Answers or comments posted by instructors
piazza_daily_questions_notes = piazza_series_df['Student questions or notes per day (public)'].fillna(0) + \
piazza_series_df['Student questions or notes per day (public, anonymous)'].fillna(0) + \
piazza_series_df['Student questions or notes per day (private)'].fillna(0) + \
piazza_series_df['Student scheduling / extension / logistical requests per day (public or private)'].fillna(0)
piazza_daily_answers_comments = piazza_series_df['Student answers or comments per day (public)'].fillna(0) + \
piazza_series_df['Student answers or comments per day (public, anonymous)'].fillna(0) + \
piazza_series_df['Student answers or comments per day (private)'].fillna(0)
piazza_daily_assignment_submissions = piazza_series_df['Student assignments per day (public or private, some anonymous)'].fillna(0) + \
piazza_series_df['Student comments for assignment per day (public)'].fillna(0) + \
piazza_series_df['Student comments for assignment per day (public, anonymous)'].fillna(0)
piazza_daily_instructor_posts = piazza_series_df['Instructor questions or notes per day'].fillna(0) + \
piazza_series_df['Instructor answers or comments per day'].fillna(0)
piazza_daily_questions_notes_smoothed = piazza_daily_questions_notes.rolling(window=3,center=True).mean().loc['2020-09-27':'2020-12-20']
piazza_daily_answers_comments_smoothed = piazza_daily_answers_comments.rolling(window=3,center=True).mean().loc['2020-09-27':'2020-12-20']
piazza_daily_assignment_submissions_smoothed = piazza_daily_assignment_submissions.rolling(window=3,center=True).mean().loc['2020-09-27':'2020-12-20']
piazza_daily_instructor_posts_smoothed = piazza_daily_instructor_posts.rolling(window=3,center=True).mean().loc['2020-09-27':'2020-12-20']
# Plot time series
short_width = True # short or long version? if short, don't include legend
def make_patch_spines_invisible(ax):
ax.set_frame_on(True)
ax.patch.set_visible(False)
for sp in ax.spines.values():
sp.set_visible(False)
if short_width: plt.figure(figsize=(8.4,3.8),facecolor='w',dpi=300)
else: plt.figure(figsize=(14,7),facecolor='w',dpi=300)
ax1 = plt.gca()
p1a, = ax1.plot(video_completion_weekly_median.index,video_completion_weekly_median.values,c='k',lw=2.5,ls=':',label='Median',zorder=4)
p1b, = ax1.plot(video_completion_weekly_average.index,video_completion_weekly_average.values,c='k',lw=3,ls='-',label='Average',zorder=4)
ax1.set_ylim([-0.3,102])
if short_width: ax1.set_xlim([datetime(2020,9,25),datetime(2020,12,19)])
else: ax1.set_xlim([datetime(2020,9,25),datetime(2020,12,22)])
ax1.set_ylabel('Flipped video completion',fontsize='large')
ax1.yaxis.set_major_formatter(mtick.PercentFormatter())
if short_width: line_labels = ['Median ','Average ']; fontsize = 'medium'
else: line_labels = ['Median ','Average ']; fontsize = 'large'
ax1.text(video_completion_weekly_median.index[0],video_completion_weekly_median.values[0],line_labels[0],
horizontalalignment='right',verticalalignment='top',fontsize=fontsize,c='k')
ax1.text(video_completion_weekly_average.index[0],video_completion_weekly_average.values[0],line_labels[1],
horizontalalignment='right',verticalalignment='center',fontsize=fontsize,c='k')
ax1.set_zorder(3)
ax1.patch.set_visible(False)
ax2 = ax1.twinx()
p2, = ax2.plot(piazza_daily_users_smoothed.loc['2020-09-27':'2020-12-22'],c='rebeccapurple',lw=3,zorder=3)
ax2.set_ylim([-0.075,25.5])
ax2.yaxis.label.set_color(p2.get_color())
ax2.tick_params(axis='y',colors=p2.get_color())
ax2.set_ylabel('Q&A forum unique users per day',fontsize='large')
ax2.set_zorder(1)
ax2.patch.set_visible(False)
ax2.grid(axis='y',zorder=-1)
ax3 = ax1.twinx()
if short_width: ax3.spines['right'].set_position(('axes',1.11))
else: ax3.spines['right'].set_position(('axes',1.09))
make_patch_spines_invisible(ax3)
ax3.spines['right'].set_visible(True)
ax3.fill_between(piazza_daily_questions_notes_smoothed.index,piazza_daily_questions_notes_smoothed + piazza_daily_answers_comments_smoothed + piazza_daily_assignment_submissions_smoothed,
piazza_daily_questions_notes_smoothed + piazza_daily_answers_comments_smoothed + piazza_daily_assignment_submissions_smoothed + piazza_daily_instructor_posts_smoothed,
color='0.8',alpha=0.8,zorder=2,label='Instructor posts')
ax3.fill_between(piazza_daily_questions_notes_smoothed.index,piazza_daily_questions_notes_smoothed + piazza_daily_answers_comments_smoothed,
piazza_daily_questions_notes_smoothed + piazza_daily_answers_comments_smoothed + piazza_daily_assignment_submissions_smoothed,
color='skyblue',alpha=0.9,zorder=2,label='Student required posts')
if short_width: shade_label = 'Student discussion'
else: shade_label = 'Student answers and comments'
ax3.fill_between(piazza_daily_questions_notes_smoothed.index,piazza_daily_questions_notes_smoothed,
piazza_daily_questions_notes_smoothed + piazza_daily_answers_comments_smoothed,
color='dodgerblue',alpha=0.8,zorder=2,label=shade_label)
if short_width: shade_label = 'Student questions'
else: shade_label = 'Student questions and notes'
ax3.fill_between(piazza_daily_questions_notes_smoothed.index,piazza_daily_questions_notes_smoothed,
color='mediumblue',alpha=0.8,zorder=2,label=shade_label)
ax3.set_ylim([-0.15,51])
if short_width: plt.legend(loc='lower left',frameon=False,ncol=4,fontsize='small',handletextpad=0.4,columnspacing=1.3,bbox_to_anchor=(0.0,0.98))
else: plt.legend(loc='upper right',frameon=True)
ax3.yaxis.label.set_color('mediumblue')
ax3.tick_params(axis='y',colors='mediumblue')
ax3.set_ylabel('Q&A forum posts per day',fontsize='large')
ax3.set_zorder(2)
ax3.patch.set_visible(False)
def arrow_label(dt,lift,zorder,label):
ax3.arrow(dt,lift,0,-(lift-1.5),color='k',head_width=0.5,zorder=5+zorder)
if short_width: fontsize = 'small'
else: fontsize = 'medium'
tx = ax3.text(dt,lift+0.5,label,horizontalalignment='center',verticalalignment='bottom',fontsize=fontsize,c='k',
bbox=dict(facecolor='0.95',alpha=0.9,boxstyle='round,pad=0.25'))
tx.set_zorder(5+zorder)
arrow_label(datetime(2020,10,6,11,59),18,1,'A#0')
arrow_label(datetime(2020,10,16,11,59),15.5,2,'Topic\ncheck-in')
arrow_label(datetime(2020,10,17,11,59),10,3,'A#1')
arrow_label(datetime(2020,10,31,11,59),13,4,'A#2')
arrow_label(datetime(2020,11,7,11,59),17,5,'Data\ncheck-in')
arrow_label(datetime(2020,11,14,11,59),14,6,'Peer\ninput\ndue')
arrow_label(datetime(2020,11,18,11,59),11,7,'A#3')
arrow_label(datetime(2020,12,1,11,59),9,8,'A#4')
arrow_label(datetime(2020,12,9,11,59),13,9,'Project\npresentations')
arrow_label(datetime(2020,12,12,11,59),5,10,'Slides and\ncode due')
ax1.xaxis.set_major_locator(mdates.WeekdayLocator(byweekday=mdates.SATURDAY))
xticks = ax1.xaxis.get_major_ticks()
xticks[0].set_visible(False)
ax1.xaxis.set_ticklabels(['',*['{0}'.format(i) for i in range(1,11+1)],'']);
if short_width: week_label_drop = -3.1
else: week_label_drop = -1.8
plt.text(datetime(2020,9,27),week_label_drop,'Week:',verticalalignment='center',horizontalalignment='center');
ax1.spines['left'].set_position(('outward',5))
ax2.spines['left'].set_position(('outward',5))
ax1.spines['right'].set_position(('outward',5))
ax2.spines['right'].set_position(('outward',5))
ax1.spines['top'].set_visible(False)
ax2.spines['top'].set_visible(False)
plt.savefig(export_to + 'Panopto and Piazza time series.pdf',bbox_inches='tight')
# Totals
piazza_series_df_manual_counts = piazza_series_df.iloc[:,list(piazza_series_df.keys()).index('Student questions or notes per day (public)'):]
print('Total Piazza posts:',int(piazza_series_df_manual_counts.sum().sum()))
piazza_series_df_student_count = np.sum([piazza_series_df[key].sum() for key in piazza_series_df.keys() if 'Student' in key])
print('Total Piazza posts from students:',piazza_series_df_student_count)
# Breakdown of all Piazza post types by students and instructors
pie_main = {'Student questions and notes' : piazza_series_df['Student questions or notes per day (public)'].sum() + \
piazza_series_df['Student questions or notes per day (public, anonymous)'].sum() + \
piazza_series_df['Student questions or notes per day (private)'].sum(),
'Student scheduling,\nextension, and\nlogistical questions' : piazza_series_df['Student scheduling / extension / logistical requests per day (public or private)'].sum(),
'Student answers\nand comments' : piazza_series_df['Student answers or comments per day (public)'].sum() + \
piazza_series_df['Student answers or comments per day (public, anonymous)'].sum() + \
piazza_series_df['Student answers or comments per day (private)'].sum(),
'Student required posts' : piazza_series_df['Student comments for assignment per day (public)'].sum() + \
piazza_series_df['Student comments for assignment per day (public, anonymous)'].sum() + \
piazza_series_df['Student assignments per day (public or private, some anonymous)'].sum(),
'Instructor posts,\nanswers, and comments' : piazza_series_df['Instructor questions or notes per day'].sum() + \
piazza_series_df['Instructor answers or comments per day'].sum()}
pie_main_keys = np.array(list(pie_main.keys()))
pie_main_vals = np.array(list(pie_main.values()))
pie_main_colors = ['mediumblue','mediumblue','dodgerblue','skyblue','0.8']
pie_main_alpha = [0.8,0.8,0.8,0.9,0.8]
pie_main_hatch = [None,'||',None,None,None]
pie_main_label2_colors = ['w','w','w','k','k']
# Breakdown of all Piazza posts by audience
pie_main_audience = [piazza_series_df['Student questions or notes per day (public)'].sum(),
piazza_series_df['Student questions or notes per day (public, anonymous)'].sum(),
piazza_series_df['Student questions or notes per day (private)'].sum(),
piazza_series_df['Student scheduling / extension / logistical requests per day (public or private)'].sum(),
piazza_series_df['Student answers or comments per day (public)'].sum(),
piazza_series_df['Student answers or comments per day (public, anonymous)'].sum(),
piazza_series_df['Student answers or comments per day (private)'].sum(),
piazza_series_df['Student assignments per day (public or private, some anonymous)'].sum(),
piazza_series_df['Student comments for assignment per day (public)'].sum(),
piazza_series_df['Student comments for assignment per day (public, anonymous)'].sum(),
piazza_series_df['Instructor questions or notes per day'].sum() + \
piazza_series_df['Instructor answers or comments per day'].sum()]
pmac_indices = [0,1,2,3,0,1,2,3,0,1,3]
pma_colors = ['darkgoldenrod','goldenrod','palegoldenrod','0.95']
pie_main_audience_colors = [pma_colors[idx] for idx in pmac_indices]
# Audience of non-required Piazza questions, notes, answers, and comments by students
pie_audience = {'Public signed posts' : piazza_series_df['Student questions or notes per day (public)'].sum() + \
piazza_series_df['Student answers or comments per day (public)'].sum(),
'Public anonymous posts' : piazza_series_df['Student questions or notes per day (public, anonymous)'].sum() + \
piazza_series_df['Student answers or comments per day (public, anonymous)'].sum(),
'Private posts (to instructors only)' : piazza_series_df['Student questions or notes per day (private)'].sum() + \
piazza_series_df['Student answers or comments per day (private)'].sum()}
pie_audience_keys = np.array(list(pie_audience.keys()))
pie_audience_vals = np.array(list(pie_audience.values()))
Total Piazza posts: 889 Total Piazza posts from students: 530.0
# Plot
plt.rcParams['hatch.color'] = 'k'
plt.figure(figsize=(6,6),facecolor='w',dpi=300)
patches, labels1, labels2 = plt.pie(pie_main_vals,labels=pie_main_keys,colors=pie_main_colors,autopct='%.1f%%',pctdistance=0.75,
startangle=90,counterclock=False,frame=True)
for patch_idx, patch in enumerate(patches):
patch.set_hatch(pie_main_hatch[patch_idx])
patch.set_alpha(pie_main_alpha[patch_idx])
for label2_idx, label2 in enumerate(labels2): label2.set_color(pie_main_label2_colors[label2_idx])
patches, labels1 = plt.pie(pie_main_audience,colors=pie_main_audience_colors,radius=0.5,
startangle=90,counterclock=False)
plt.gca().set_axis_off()
plt.tight_layout()
leg = plt.legend(patches[0:4],['Public signed posts','Public anonymous posts','Private posts to instructors only','Various or specified by assignment'],
title='$\\bf{Chosen~audience:}$',loc='lower left',bbox_to_anchor=(-0.5,0,0,1),frameon=False)
leg._legend_box.align = 'left'
plt.savefig(export_to + 'Piazza post type and audience.pdf',bbox_inches='tight')
# Cross-reference column values (add video-specific metrics to each session and video summary entry)
panopto_session_df['Date and time released'] = panopto_info_df.loc[panopto_session_df['Session Name']]['Date and time released'].values
panopto_session_df['Class date and time to be watched by'] = panopto_info_df.loc[panopto_session_df['Session Name']]['Class date and time to be watched by'].values
panopto_session_df['Duration (fractional minutes)'] = panopto_info_df.loc[panopto_session_df['Session Name']]['Duration (fractional minutes)'].values
panopto_video_df['Date and time released'] = panopto_info_df.loc[panopto_video_df['Session Name']]['Date and time released'].values
panopto_video_df['Class date and time to be watched by'] = panopto_info_df.loc[panopto_video_df['Session Name']]['Class date and time to be watched by'].values
panopto_video_df['Duration (fractional minutes)'] = panopto_info_df.loc[panopto_video_df['Session Name']]['Duration (fractional minutes)'].values
# Calculate new metrics by Panopto session and video summary
panopto_session_df['Watch timing relative to release date'] = panopto_session_df['Timestamp'] - panopto_session_df['Date and time released']
panopto_session_df['Watch timing relative to due date'] = panopto_session_df['Timestamp'] - panopto_session_df['Class date and time to be watched by']
# Panopto video release distribution relative to class
release_timing = (panopto_info_df['Date and time released'] - panopto_info_df['Class date and time to be watched by']) / timedelta(days=1)
release_iqr25 = release_timing.quantile(q=0.25)
release_median = release_timing.median()
release_iqr75 = release_timing.quantile(q=0.75)
# Panopto before/after class metrics
only_views_before_class = panopto_session_df[panopto_session_df['Watch timing relative to due date'] / timedelta(days=1) <= 0]
only_views_after_class = panopto_session_df[panopto_session_df['Watch timing relative to due date'] / timedelta(days=1) > 0]
mins_before_class_by_lesson_and_student = only_views_before_class[['Session Name','Minutes Delivered','ID No.']].groupby(['ID No.','Session Name']).sum()
mins_after_class_by_lesson_and_student = only_views_after_class[['Session Name','Minutes Delivered','ID No.']].groupby(['ID No.','Session Name']).sum()
student_vs_lesson_minutes_delivered_before_class = pd.pivot_table(mins_before_class_by_lesson_and_student,values='Minutes Delivered',index=['ID No.'],columns=['Session Name'],fill_value=0)
student_vs_lesson_minutes_delivered_after_class = pd.pivot_table(mins_after_class_by_lesson_and_student,values='Minutes Delivered',index=['ID No.'],columns=['Session Name'],fill_value=0)
total_lesson_minutes_delivered_before_class = student_vs_lesson_minutes_delivered_before_class.sum(axis=1).reindex(all_ids,fill_value=0)
total_lesson_minutes_delivered_after_class = student_vs_lesson_minutes_delivered_after_class.sum(axis=1).reindex(all_ids,fill_value=0)
# Panopto re-watch metric
rewatch_mask = (student_vs_lesson_minutes_delivered_before_class > 0)
total_lesson_minutes_delivered_after_class_rewatches = student_vs_lesson_minutes_delivered_after_class[rewatch_mask].sum(axis=1).reindex(all_ids,fill_value=0)
# Minutes after class: fraction that were re-watches vs. first-time watches
after_class_percent_first_time = (total_lesson_minutes_delivered_after_class.sum() - total_lesson_minutes_delivered_after_class_rewatches.sum()) / panopto_session_df['Minutes Delivered'].sum()
after_class_percent_rewatch = total_lesson_minutes_delivered_after_class_rewatches.sum() / panopto_session_df['Minutes Delivered'].sum()
print('{0:.2f}% of Panopto minutes watched after class were first-time watches'.format(100*after_class_percent_first_time))
print('{0:.2f}% of Panopto minutes watched after class were re-watches'.format(100*after_class_percent_rewatch))
print('Half of all re-watched minutes = {0:.2f} minutes'.format(total_lesson_minutes_delivered_after_class_rewatches.sum()/2))
print('{0} students accounted for over half of all re-watched minutes'.format(np.where(total_lesson_minutes_delivered_after_class_rewatches.sort_values(ascending=False).cumsum() >
total_lesson_minutes_delivered_after_class_rewatches.sum()/2)[0][0] + 1))
# Additional metrics for figure
panopto_lesson_counts = panopto_info_df['Duration (fractional minutes)'].groupby(panopto_info_df['Lesson number']).count()
panopto_lesson_durations = panopto_info_df['Duration (fractional minutes)'].groupby(panopto_info_df['Lesson number']).sum()
student_vs_video_delivery = pd.pivot_table(panopto_video_df,values='Minutes Delivered',
index=['ID No.'],columns=['Session Name'],fill_value=0)
video_percent_delivery = 100 * student_vs_video_delivery.mean(axis=0) / panopto_info_df['Duration (fractional minutes)']
lesson_percent_delivery = 100 * student_vs_lesson_minutes_delivered.mean(axis=0) / panopto_lesson_durations
26.84% of Panopto minutes watched after class were first-time watches 7.56% of Panopto minutes watched after class were re-watches Half of all re-watched minutes = 377.41 minutes 3 students accounted for over half of all re-watched minutes
# Cumulative distribution of Panopto video watch timing
# Compress positive region of x-axis by factor of 10
watch_timing_compressed_after = panopto_session_df['Watch timing relative to due date'] / timedelta(days=1)
watch_timing_compressed_after[watch_timing_compressed_after > 0] /= 10
# Make plot
plt.figure(figsize=(6,4),facecolor='w',dpi=600)
plt.hist(watch_timing_compressed_after,
bins=np.arange(-4,3.1,0.001),
weights=panopto_session_df['Minutes Delivered'] / np.sum(panopto_session_df['Minutes Delivered']),
color='0.5',histtype='stepfilled',cumulative=True,alpha=0.6,zorder=3);
plt.hist(watch_timing_compressed_after,
bins=np.arange(-4,3.1,0.001),
weights=panopto_session_df['Minutes Delivered'] / np.sum(panopto_session_df['Minutes Delivered']),
color='k',histtype='step',linewidth=1.5,cumulative=True,zorder=4);
plt.xlim([-3.5,3])
plt.ylim([0,1])
correct_xtick_labels = plt.xticks()[0]
correct_xtick_labels[correct_xtick_labels > 0] *= 10
plt.gca().set_xticklabels([str(int(val)) for val in correct_xtick_labels])
plt.gca().set_yticklabels(['{:.0f}%'.format(100*val) for val in plt.yticks()[0]])
plt.vlines(0,0,1,color='k',linewidth=1.5,linestyle='--',zorder=4)
for d in np.arange(-3,30,2):
day_start = d+(-14.5/24)
day_end = (d+1)+(-14.5/24)
if day_start > 0: day_start /= 10
if day_end > 0: day_end /= 10
plt.axvspan(day_start,day_end,color='0.5',linewidth=0,alpha=0.1,zorder=1)
plt.grid(axis='y',alpha=0.5,zorder=1)
plt.ylabel('Percent of minutes watched')
plt.xlabel('Flipped video watch timing relative to corresponding class (days)')
plt.title('Cumulative distribution of Panopto video watch timing\n($n$ = {0} videos; {1:.1f} total hours watched)\n'.format(len(panopto_info_df),np.sum(panopto_session_df['Minutes Delivered'])/60))
plt.text(-0.15,0.95,'Before class',horizontalalignment='right',verticalalignment='top')
plt.text(0.15,0.95,'After class',horizontalalignment='left',verticalalignment='top')
# Video release
plt.errorbar(release_median,0.48,xerr=np.array([[release_median-release_iqr25],[release_iqr75-release_median]]),
marker='o',capsize=4,color='k')
plt.text(release_iqr25,0.45,'Q1',horizontalalignment='center',verticalalignment='top',fontsize='small')
plt.text(release_median,0.45,'Median',horizontalalignment='center',verticalalignment='top',fontsize='small')
plt.text(release_iqr75,0.45,'Q3',horizontalalignment='center',verticalalignment='top',fontsize='small')
plt.text(release_median,0.53,'Video release',horizontalalignment='center',verticalalignment='bottom')
# Formatting
plt.gca().spines['left'].set_position(('outward',5))
plt.gca().spines['bottom'].set_position(('outward',5))
plt.gca().spines['top'].set_visible(False)
plt.gca().spines['right'].set_visible(False)
plt.savefig(export_to + 'Panopto watch timing.pdf',bbox_inches='tight')
# Panopto video duration vs. average completion rate
plt.figure(figsize=(13,7),facecolor='w',dpi=450)
def drop_spines():
plt.gca().spines['left'].set_position(('outward',5))
plt.gca().spines['bottom'].set_position(('outward',5))
plt.gca().spines['top'].set_visible(False)
plt.gca().spines['right'].set_visible(False)
plt.subplot(2,4,1)
hist = plt.hist(panopto_lesson_counts,bins=np.arange(-0.5,5+0.5,1),rwidth=0.8,color='k',zorder=2)
for y, x in zip(hist[0],hist[1]):
if y != 0: plt.text(x+0.5,y+0.05,'{0:.1f}%'.format(100*y/np.sum(hist[0])),
horizontalalignment='center',verticalalignment='bottom',fontsize='x-small')
plt.xlim([0.5,4.5])
plt.xticks([1,2,3,4])
plt.ylim([0,11])
plt.xlabel('Number of videos per lesson')
plt.ylabel('Count')
plt.title('Videos per lesson\n($n$ = {0} lessons)'.format(len(panopto_lesson_durations)))
plt.grid(alpha=0.5,zorder=1)
drop_spines()
plt.subplot(2,4,2)
hist = plt.hist(panopto_lesson_durations,bins=np.arange(20,45+1,5),rwidth=0.8,color='k',zorder=2)
for y, x in zip(hist[0],hist[1]):
if y != 0: plt.text(x+2.5,y+0.1,'{0:.1f}%'.format(100*y/np.sum(hist[0])),
horizontalalignment='center',verticalalignment='bottom',fontsize='x-small')
plt.xlim([20,45])
plt.ylim([0,5.5])
plt.xlabel('Duration (mins)')
plt.ylabel('Count')
plt.title('Lesson duration\n($n$ = {0} lessons)'.format(len(panopto_lesson_durations)))
plt.grid(alpha=0.5,zorder=1)
drop_spines()
plt.subplot(2,4,3)
hist = plt.hist(panopto_info_df['Duration (fractional minutes)'],bins=np.arange(0,30+1,5),rwidth=0.8,color='k',zorder=2)
for y, x in zip(hist[0],hist[1]):
if y != 0: plt.text(x+2.5,y+0.1,'{0:.1f}%'.format(100*y/np.sum(hist[0])),
horizontalalignment='center',verticalalignment='bottom',fontsize='x-small')
plt.xlim([0,30])
plt.ylim([0,21])
plt.xlabel('Duration (mins)')
plt.ylabel('Count')
plt.title('Video duration\n($n$ = {0} videos)'.format(len(panopto_info_df)))
plt.grid(alpha=0.5,zorder=1)
drop_spines()
plt.subplot(2,4,4)
hist = plt.hist(100*(student_vs_video_delivery / panopto_info_df['Duration (fractional minutes)']).values.flatten(),
bins=np.arange(0,150,20),rwidth=0.8,color='k',zorder=2)
for y, x in zip(hist[0],hist[1]):
if y != 0: plt.text(x+10,y+2,'{0:.1f}%'.format(100*y/np.sum(hist[0])),
horizontalalignment='center',verticalalignment='bottom',fontsize='xx-small')
plt.xlabel('Fraction watched')
plt.ylabel('Count')
plt.gca().xaxis.set_major_formatter(mtick.PercentFormatter())
plt.title('Video fraction watched\n' + r'($n$ = {0} videos $\times$ {1} students)'.format(len(panopto_info_df),len(all_ids)))
plt.grid(alpha=0.5,zorder=1)
drop_spines()
plt.subplot(2,4,5)
pearson_r, pearson_p = stats.pearsonr(panopto_lesson_counts.iloc[:-1],lesson_percent_delivery.iloc[:-1])
plt.scatter(panopto_lesson_counts.iloc[:-1],lesson_percent_delivery.iloc[:-1],c='k',zorder=2)
plt.xlim([0.5,4.5])
plt.xlabel('Number of videos per lesson')
plt.ylabel('Average fraction watched')
plt.gca().yaxis.set_major_formatter(mtick.PercentFormatter(decimals=0))
plt.title('Videos per lesson\nvs. average fraction watched*\n(* = Lesson #16 outlier removed)\n' +
'(Pearson\'s ' + r'$r$ = {0:.02f}, $p$ = {1:.02f})'.format(pearson_r,pearson_p))
plt.grid(alpha=0.5,zorder=1)
drop_spines()
plt.subplot(2,4,6)
pearson_r, pearson_p = stats.pearsonr(panopto_lesson_durations.iloc[:-1],lesson_percent_delivery.iloc[:-1])
plt.scatter(panopto_lesson_durations.iloc[:-1],lesson_percent_delivery.iloc[:-1],c='k',zorder=2)
plt.xlim([20,45])
plt.xlabel('Duration (mins)')
plt.ylabel('Average fraction watched')
plt.gca().yaxis.set_major_formatter(mtick.PercentFormatter(decimals=0))
plt.title('Lesson duration\nvs. average fraction watched*\n' +
'(Pearson\'s ' + r'$r$ = {0:.02f}, $p$ = {1:.02f})'.format(pearson_r,pearson_p))
plt.grid(alpha=0.5,zorder=1)
drop_spines()
plt.subplot(2,4,7)
pearson_r, pearson_p = stats.pearsonr(panopto_info_df['Duration (fractional minutes)'][:-3],
student_vs_video_completion.mean(axis=0)[:-3])
plt.scatter(panopto_info_df['Duration (fractional minutes)'][:-3],
student_vs_video_completion.mean(axis=0)[:-3],
c='k',zorder=2)
plt.xlim([0,30])
plt.xlabel('Duration (mins)')
plt.ylabel('Average completion')
plt.gca().yaxis.set_major_formatter(mtick.PercentFormatter(decimals=0))
plt.title('Video duration\nvs. average completion rate*\n' +
'(Pearson\'s ' + r'$r$ = {0:.02f}, $p$ = {1:.02f})'.format(pearson_r,pearson_p))
plt.grid(alpha=0.5,zorder=1)
drop_spines()
plt.subplot(2,4,8)
pearson_r, pearson_p = stats.pearsonr(panopto_info_df['Duration (fractional minutes)'][:-3],
video_percent_delivery[:-3])
plt.scatter(panopto_info_df['Duration (fractional minutes)'][:-3],
video_percent_delivery[:-3],
c='k',zorder=2)
plt.xlim([0,30])
plt.xlabel('Duration (mins)')
plt.ylabel('Average fraction watched')
plt.gca().yaxis.set_major_formatter(mtick.PercentFormatter(decimals=0))
plt.title('Video duration\nvs. average fraction watched*\n' +
'(Pearson\'s ' + r'$r$ = {0:.02f}, $p$ = {1:.02f})'.format(pearson_r,pearson_p))
plt.grid(alpha=0.5,zorder=1)
drop_spines()
plt.tight_layout(h_pad=2.5)
plt.savefig(export_to + 'Panopto statistics.pdf',bbox_inches='tight')
# Aggregate final project cognitive level ratings
cog_questions = main_df[['Final project - cognitive level - question #1',
'Final project - cognitive level - question #2',
'Final project - cognitive level - question #3']]
cog_hypotheses = main_df[['Final project - cognitive level - hypothesis #1',
'Final project - cognitive level - hypothesis #2',
'Final project - cognitive level - hypothesis #3']]
cog_questions_weight = 1 / cog_questions.count(axis=1)
cog_hypotheses_weight = 1 / cog_hypotheses.count(axis=1)
cog_questions_all = cog_questions.values.T.flatten()[~np.isnan(cog_questions.values.T.flatten())]
cog_hypotheses_all = cog_hypotheses.values.T.flatten()[~np.isnan(cog_hypotheses.values.T.flatten())]
cog_questions_weight_all = np.tile(cog_questions_weight,3)[~np.isnan(cog_questions.values.T.flatten())]
cog_hypotheses_weight_all = np.tile(cog_hypotheses_weight,3)[~np.isnan(cog_hypotheses.values.T.flatten())]
# Combined cognitive level rating (= average of the average rating of questions and the average rating of hypotheses)
combined_cognitive_level = (cog_questions.mean(axis=1,skipna=True) + cog_hypotheses.mean(axis=1,skipna=True)) / 2
# Compare hypotheses to questions by student
hypothesis_question_diff = (cog_hypotheses.mean(axis=1,skipna=True) - cog_questions.mean(axis=1,skipna=True))
# Final project code analyses
code_syntax_used = main_df['Final project - code - percent of syntax used']
code_fig_count = main_df['Final project - code - figure count']
code_subplot_count = main_df['Final project - code - subplot count']
code_total_fig_count = code_fig_count + code_subplot_count
# Aggregate final project complexity ratings
project_domains = main_df[['Final project - complexity - physical','Final project - complexity - biological',
'Final project - complexity - chemical','Final project - complexity - geological',
'Final project - complexity - cryosphere','Final project - complexity - atmospheric']]
project_domains_sum_by_domain = project_domains.divide(project_domains.sum(axis=1),axis='index').sum(axis=0)
project_domains_sum_by_student = project_domains.sum(axis=1)
project_file_types_sum_by_student = main_df[['Final project - complexity - CSV','Final project - complexity - NetCDF']].sum(axis=1)
project_datasets = main_df['Final project - complexity - number of datasets']
# Combined complexity rating (= sum of # project domains, # file types, and # data sets used)
combined_complexity = project_domains_sum_by_student + project_file_types_sum_by_student + project_datasets
# Plot summary of final project metrics
def drop_spines():
plt.gca().spines['left'].set_position(('outward',5))
plt.gca().spines['bottom'].set_position(('outward',5))
plt.gca().spines['top'].set_visible(False)
plt.gca().spines['right'].set_visible(False)
plt.figure(figsize=(12,6.5),facecolor='w',dpi=450)
plt.subplot(2,4,1)
plt.bar(range(len(project_domains_sum_by_domain)),project_domains_sum_by_domain.values,
tick_label=['Phys.','\nBiol.','Chem.','\nGeol.','Cryo.','\nAtmos.'],
width=0.8,color='k',zorder=2)
for y, x in zip(project_domains_sum_by_domain.values,range(len(project_domains_sum_by_domain))):
if y != 0: plt.text(x,y+0.05,'{0:.0f}%'.format(100*y/np.sum(project_domains_sum_by_domain.values)),
horizontalalignment='center',verticalalignment='bottom',fontsize='x-small')
plt.ylim([None,plt.ylim()[1]*1.1])
plt.setp(plt.gca().get_xticklabels(),ha="right",rotation=45)
plt.title('Project topic domains')
plt.ylabel('Weighted count')
plt.grid(alpha=0.5,lw=0.5,zorder=1)
drop_spines()
plt.subplot(2,4,2)
hist = plt.hist(cog_questions_all,weights=cog_questions_weight_all,bins=np.arange(2.5,7,1),rwidth=0.8,color='k',zorder=2)
for y, x in zip(hist[0],hist[1]):
if y != 0: plt.text(x+0.5,y+0.05,'{0:.0f}%'.format(100*y/np.sum(hist[0])),
horizontalalignment='center',verticalalignment='bottom',fontsize='x-small')
plt.xlim(0.5,6.5)
plt.xticks([1,2,3,4,5,6])
plt.ylim([None,plt.ylim()[1]*1.1])
plt.title('Cognitive level of questions')
plt.xlabel("Level of Bloom's taxonomy")
plt.ylabel('Weighted count')
plt.grid(alpha=0.5,lw=0.5,zorder=1)
drop_spines()
plt.subplot(2,4,3)
hist = plt.hist(cog_hypotheses_all,weights=cog_hypotheses_weight_all,bins=np.arange(2.5,7,1),rwidth=0.8,color='k',zorder=2)
for y, x in zip(hist[0],hist[1]):
if y != 0: plt.text(x+0.5,y+0.05,'{0:.0f}%'.format(100*y/np.sum(hist[0])),
horizontalalignment='center',verticalalignment='bottom',fontsize='x-small')
plt.xlim(0.5,6.5)
plt.xticks([1,2,3,4,5,6])
plt.ylim([None,plt.ylim()[1]*1.1])
plt.title('Cognitive level of hypotheses')
plt.xlabel("Level of Bloom's taxonomy")
plt.ylabel('Weighted count')
plt.grid(alpha=0.5,lw=0.5,zorder=1)
drop_spines()
plt.subplot(2,4,4)
values_for_hist = main_df['Final project - code - percent of syntax used'].dropna().values
hist = plt.hist(values_for_hist,bins=np.arange(0,values_for_hist.max()+5,5),rwidth=0.8,color='k',zorder=2)
for y, x in zip(hist[0],hist[1]):
if y != 0: plt.text(x+2.5,y+0.05,'{0:.0f}%'.format(100*y/np.sum(hist[0])),
horizontalalignment='center',verticalalignment='bottom',fontsize='x-small')
plt.ylim([None,plt.ylim()[1]*1.1])
plt.title("Use of code in projects")
plt.xlabel("Fraction of code syntax\ntaught in course")
plt.ylabel('Count')
plt.grid(alpha=0.5,lw=0.5,zorder=1)
drop_spines()
plt.gca().xaxis.set_major_formatter(mtick.PercentFormatter(decimals=0))
plt.suptitle('Graded assessments',y=0.48,weight='bold')
plt.subplot(2,4,5)
values_for_hist = (main_df['Grade - final project - code - correctness (out of 8)'] +
main_df['Grade - final project - code - functionality (out of 5)'] +
main_df['Grade - final project - code - tidiness (out of 6)'] +
main_df['Grade - final project - code - perseverance (out of 5)']).dropna().values / 24
hist = plt.hist(100*values_for_hist,bins=np.arange(0,100+10,10),rwidth=0.8,color='k',zorder=2)
for y, x in zip(hist[0],hist[1]):
if y != 0: plt.text(x+5,y+0.05,'{0:.0f}%'.format(100*y/np.sum(hist[0])),
horizontalalignment='center',verticalalignment='bottom',fontsize='x-small')
plt.ylim([None,plt.ylim()[1]*1.1])
plt.title('Code\n(SLO #2, #6)')
plt.xlabel('Grade')
plt.ylabel('Count')
plt.grid(alpha=0.5,lw=0.5,zorder=1)
drop_spines()
plt.xlim([40,100])
plt.xticks(np.arange(40,100+10,10),rotation=60)
plt.gca().xaxis.set_major_formatter(mtick.PercentFormatter())
plt.subplot(2,4,6)
values_for_hist = (main_df['Grade - final project - plots - clarity (out of 5)'] +
main_df['Grade - final project - plots - colormaps (out of 3)'] +
main_df['Grade - final project - plots - labels (out of 5)'] +
main_df['Grade - final project - plots - creativity (out of 3)']).dropna().values / 16
hist = plt.hist(100*values_for_hist,bins=np.arange(0,100+10,10),rwidth=0.8,color='k',zorder=2)
for y, x in zip(hist[0],hist[1]):
if y != 0: plt.text(x+5,y+0.05,'{0:.0f}%'.format(100*y/np.sum(hist[0])),
horizontalalignment='center',verticalalignment='bottom',fontsize='x-small')
plt.ylim([None,plt.ylim()[1]*1.1])
plt.title('Visualizations\n(SLO #3, #6)')
plt.xlabel('Grade')
plt.ylabel('Count')
plt.grid(alpha=0.5,lw=0.5,zorder=1)
drop_spines()
plt.xlim([40,100])
plt.xticks(np.arange(40,100+10,10),rotation=60)
plt.gca().xaxis.set_major_formatter(mtick.PercentFormatter())
plt.subplot(2,4,7)
values_for_hist = (main_df['Grade - final project - presentation - data information (out of 3)'] +
main_df['Grade - final project - presentation - data processing (out of 3)'] +
main_df['Grade - final project - presentation - results (out of 3)']).dropna().values / 9
hist = plt.hist(100*values_for_hist,bins=np.arange(0,100+10,10),rwidth=0.8,color='k',zorder=2)
for y, x in zip(hist[0],hist[1]):
if y != 0: plt.text(x+5,y+0.05,'{0:.0f}%'.format(100*y/np.sum(hist[0])),
horizontalalignment='center',verticalalignment='bottom',fontsize='x-small')
plt.ylim([None,plt.ylim()[1]*1.1])
plt.title('Use of data\n(SLO #3)')
plt.xlabel('Grade')
plt.ylabel('Count')
plt.grid(alpha=0.5,lw=0.5,zorder=1)
drop_spines()
plt.xlim([40,100])
plt.xticks(np.arange(40,100+10,10),rotation=60)
plt.gca().xaxis.set_major_formatter(mtick.PercentFormatter())
plt.subplot(2,4,8)
values_for_hist = (main_df['Grade - final project - presentation - background (out of 3)'] +
main_df['Grade - final project - presentation - questions/hypotheses (out of 2)'] +
main_df['Grade - final project - presentation skills - explanations (out of 3)']).dropna().values / 8
hist = plt.hist(100*values_for_hist,bins=np.arange(0,100+10,10),rwidth=0.8,color='k',zorder=2)
for y, x in zip(hist[0],hist[1]):
if y != 0: plt.text(x+5,y+0.05,'{0:.0f}%'.format(100*y/np.sum(hist[0])),
horizontalalignment='center',verticalalignment='bottom',fontsize='x-small')
plt.ylim([None,plt.ylim()[1]*1.1])
plt.title('Scientific research\n(SLO #5)')
plt.xlabel('Grade')
plt.ylabel('Count')
plt.grid(alpha=0.5,lw=0.5,zorder=1)
drop_spines()
plt.xlim([40,100])
plt.xticks(np.arange(40,100+10,10),rotation=60)
plt.gca().xaxis.set_major_formatter(mtick.PercentFormatter())
plt.tight_layout(rect=[0,0,1,0.94],h_pad=3)
plt.savefig(export_to + 'Final projects_revised.pdf',bbox_inches='tight')
# Range of code usage metric
print(main_df['Final project - code - percent of syntax used'].min(),
main_df['Final project - code - percent of syntax used'].max())
5.714285714 29.28571429
# Test for possible relationship between questions/hypotheses' cognitive level vs. code usage
temp_mask = np.isnan(main_df['Final project - code - percent of syntax used'])
pearson_r, pearson_p = stats.pearsonr(cog_questions.mean(axis=1)[~temp_mask],main_df['Final project - code - percent of syntax used'][~temp_mask])
print('p-value for final project question average cognitive level vs. code usage:',pearson_p)
pearson_r, pearson_p = stats.pearsonr(cog_hypotheses.mean(axis=1)[~temp_mask],main_df['Final project - code - percent of syntax used'][~temp_mask])
print('p-value for final project hypotheses average cognitive level vs. code usage:',pearson_p)
p-value for final project question average cognitive level vs. code usage: 0.7273064642345082 p-value for final project hypotheses average cognitive level vs. code usage: 0.405435579526286
# Metric storage
metrics = pd.DataFrame(index=all_ids).sort_index()
units_dict = {}
metrics_small_version = pd.DataFrame(index=all_ids).sort_index()
units_dict_small_version = {}
metrics_small_version_labels = []
# Aggregator function
def save_metric(name,units,series,keep_for_small_version=True):
name_without_line_break = name.replace('\n',' ')
metrics[name_without_line_break] = series.copy()
units_dict[name_without_line_break] = units
if keep_for_small_version:
metrics_small_version[name_without_line_break] = series.copy()
units_dict_small_version[name_without_line_break] = units
metrics_small_version_labels.append(name)
### Metrics by student:
# Final course grade, expressed as difference from average class grade
# (excluding two students with missing Assignment #2; their final grades are listed as NaN)
grades = main_df['Grade - final grade (out of 100)'].sort_index().copy()
save_metric('Final grade (not re-calculated)','%',
grades - grades.mean(),
keep_for_small_version=False)
# Final course grade, expressed as difference from average class grade
# (including two students with missing Assignment #2; their grades are recalculated excluding A#2)
a0_grades = main_df['Grade - Assignment #0 (out of 50)'].copy()
a1_grades = main_df['Grade - Assignment #1 (out of 50)'].copy()
a2_grades = main_df['Grade - Assignment #2 (out of 50)'].copy()
a3_grades = main_df['Grade - Assignment #3 (out of 50)'].copy()
a4_grades = main_df['Grade - Assignment #4 (out of 50)'].copy()
a2_grades[a2_grades == 0] = np.NaN
assignment_grades = pd.DataFrame([a0_grades,a1_grades,a2_grades,a3_grades,a4_grades]).mean(axis=0).sort_index()
students_to_recalc = main_df.index[main_df['Grade - Assignment #2 (out of 50)'] == 0].values
grades_recalc = grades.copy()
for id in students_to_recalc:
recalc_final_grade = 0.6 * 100 * assignment_grades.loc[id] / 50 + \
0.25 * main_df['Grade - final project total (out of 100)'].loc[id] + \
0.15 * main_df['Grade - Piazza total (out of 100)'].loc[id]
grades_recalc.loc[id] = recalc_final_grade
print('Statistics on final grades, before re-calculating:')
print('Mean: ',grades.mean())
print('Standard deviation: ',grades.std())
print('Statistics on final grades, after re-calculating:')
print('Mean: ',grades_recalc.mean())
print('Standard deviation: ',grades_recalc.std())
save_metric('Final grade','%',
grades_recalc - grades_recalc.mean(),
keep_for_small_version=True)
# Average assignment grade, expressed as difference from average class grade
# (note: A#0-A#4; excluded zero scores when calculating average)
save_metric('Average assignment grade (1-4 only)','%',
100 * (assignment_grades - assignment_grades.mean()) / 50,
keep_for_small_version=False)
# Final project grade, expressed as difference from average class grade
save_metric('Project grade','%',
main_df['Grade - final project total (out of 100)'].sort_index() - main_df['Grade - final project total (out of 100)'].mean(),
keep_for_small_version=False)
# Final project code and plots grade, expressed as difference from average class grade
save_metric('Project grade (code and plots only)','%',
100 * (main_df['Grade - final project code and plots (out of 40)'].sort_index() - main_df['Grade - final project code and plots (out of 40)'].mean()) / 40,
keep_for_small_version=False)
# Final project combined cognitive level (averaged ratings of questions and hypotheses using Bloom's taxonomy)
save_metric('Project cognitive level',None,
combined_cognitive_level.sort_index(),
keep_for_small_version=False)
# Final project combined complexity (sum of # of domains, # of file types, and # of data sets)
save_metric('Project complexity',None,
combined_complexity.sort_index(),
keep_for_small_version=False)
# Final project combined challenge score (average of cognitive level and complexity)
save_metric('Project challenge score',None,
((combined_cognitive_level + combined_complexity) / 2).sort_index(),
keep_for_small_version=False)
# Final project syntax used (percent of keywords [functions, operators, methods] taught that were present in students' code notebooks)
save_metric('Python skills\nused in project',None,
code_syntax_used.sort_index(),
keep_for_small_version=True)
# Final project number of figures identified in code
save_metric('Project figure count',None,
code_total_fig_count.sort_index(),
keep_for_small_version=False)
# Number of pair programming experiences
# (incl. A#2-A#4, final project; minimum is 0, maximum is 4)
percent_collaborated = (main_df[['Assignment #2 - partner pair ID','Assignment #3 - partner pair ID',
'Assignment #4 - partner pair ID','Final project - partner pair ID']].count(axis=1) >= 1).mean()
print('\nStatistics on collaboration:')
print('Fraction of class that exercised pair programming option on an assignment or project:',100*percent_collaborated,'%')
average_percent_pair = main_df[['Assignment #2 - partner pair ID','Assignment #3 - partner pair ID',
'Assignment #4 - partner pair ID','Final project - partner pair ID']].notna().mean(axis=0).mean()
print('Average fraction of students collaborating on any given assignment or project:',100*average_percent_pair,'%')
save_metric('Pair programming\nexperiences',None,
main_df[['Assignment #2 - partner pair ID','Assignment #3 - partner pair ID',
'Assignment #4 - partner pair ID','Final project - partner pair ID']].count(axis=1).sort_index(),
keep_for_small_version=True)
# Piazza days online
save_metric('Q&A forum days online','days',
main_df['Piazza - days online'].sort_index(),
keep_for_small_version=True)
# Piazza views
save_metric('Q&A forum views',None,
main_df['Piazza - views'].sort_index(),
keep_for_small_version=False)
# Piazza total contributions (questions, notes, answers, and comments)
save_metric('Q&A forum total contributions',None,
main_df['Piazza - contributions'].sort_index(),
keep_for_small_version=True)
# Piazza questions and notes
save_metric('Q&A forum questions and notes',None,
(main_df['Piazza - questions'] + main_df['Piazza - notes']).sort_index(),
keep_for_small_version=False)
# Piazza answers
save_metric('Q&A forum answers only',None,
main_df['Piazza - answers'].sort_index(),
keep_for_small_version=True)
# Panopto total video views
save_metric('Total flipped video views',None,
main_df['Panopto - views and downloads'].sort_index(),
keep_for_small_version=False)
# Panopto average video delivery fraction (which can be > 100%)
save_metric('Average video delivery','%',
100*(student_vs_video_delivery / panopto_info_df['Duration (fractional minutes)']).mean(axis=1),
keep_for_small_version=False)
# Panopto total video minutes delivered
save_metric('Video minutes watched',None,
main_df['Panopto - minutes delivered'].sort_index(),
keep_for_small_version=True)
# Fraction of total minutes watched on Panopto before class
save_metric('Fraction of total video minutes watched before class','%',
100 * total_lesson_minutes_delivered_before_class / (total_lesson_minutes_delivered_before_class + total_lesson_minutes_delivered_after_class),
keep_for_small_version=False)
# Panopto average watch timing relative to class date, weighted by minutes viewed
watch_timing_weighted = panopto_session_df.groupby('ID No.').apply(lambda x: np.average(x['Watch timing relative to due date'] / timedelta(days=-1),
weights=x['Minutes Delivered']))
save_metric('Average video watch timing relative to class','days before class',
watch_timing_weighted,
keep_for_small_version=False)
# Minutes watched on Panopto before class
save_metric('Video minutes watched\nbefore class','mins',
total_lesson_minutes_delivered_before_class,
keep_for_small_version=True)
# Minutes watched on Panopto after class for first time
save_metric('Video minutes watched\nafter class (for first time)','mins',
total_lesson_minutes_delivered_after_class - total_lesson_minutes_delivered_after_class_rewatches,
keep_for_small_version=True)
# Minutes watched on Panopto after class that were 're-watches'
save_metric("Video minutes watched\nafter class (re-watched)",'mins',
total_lesson_minutes_delivered_after_class_rewatches,
keep_for_small_version=False)
# Panopto average watch timing before class date only, weighted by minutes viewed
# (same as above, but only for views before class)
only_views_before_class = panopto_session_df[panopto_session_df['Watch timing relative to due date'] / timedelta(days=1) <= 0]
watch_timing_weighted_before_class = only_views_before_class.groupby('ID No.').apply(lambda x: np.average(x['Watch timing relative to due date'] / timedelta(days=-1),
weights=x['Minutes Delivered']))
save_metric('Video watch timing\n(before class only)','days before class',
watch_timing_weighted_before_class,
keep_for_small_version=False)
# Fraction of total minutes watched on Panopto before class
save_metric('Fraction of total video minutes watched before class','%',
100 * total_lesson_minutes_delivered_before_class / (total_lesson_minutes_delivered_before_class + total_lesson_minutes_delivered_after_class),
keep_for_small_version=False)
# Panopto average watch timing relative to class date, weighted by minutes viewed
watch_timing_weighted = panopto_session_df.groupby('ID No.').apply(lambda x: np.average(x['Watch timing relative to due date'] / timedelta(days=-1),
weights=x['Minutes Delivered']))
save_metric('Average video watch timing relative to class','days before class',
watch_timing_weighted,
keep_for_small_version=False)
# Panopto average views per video on distinct days
average_views_per_video = panopto_session_df.groupby('ID No.').apply(lambda x: x.groupby('Session Name').apply(lambda y: len(np.unique(y['Timestamp'].dt.date))).mean())
save_metric('Average views per video on distinct days',None,
average_views_per_video,
keep_for_small_version=False)
# Prior coding experience (aggregate of Assignment #0 with updated rubric and PollEverywhere self-assessment)
experience_pollev_scaled = main_df['Class #0 PollEverywhere - prior coding experience, mapped to 0-3 scale'].sort_index() * (4/3)
experience_assign0_scaled = main_df['Assignment #0 - prior coding experience (out of 5; new version)'].sort_index() - 1
experience_aggregate = pd.DataFrame([experience_pollev_scaled,experience_assign0_scaled]).mean(skipna=True)
save_metric('Initial self-assessment of prior coding experience (aggregate)',None,
experience_aggregate,
keep_for_small_version=False)
# Prior coding experience (from Assignment #0 - updated rubric)
save_metric('Prior coding experience',None,
main_df['Assignment #0 - prior coding experience (out of 5; new version)'].sort_index(),
keep_for_small_version=True)
# Prior coding experience (from Assignment #0 - prelim rubric)
save_metric('Initial self-assessment of prior coding experience (old version)',None,
main_df['Assignment #0 - prior coding experience (out of 5; old version)'].sort_index(),
keep_for_small_version=False)
# Prior comfort with technology (from Assignment #0 - prelim rubric)
save_metric('Initial self-assessment of prior comfort with technology',None,
main_df['Assignment #0 - comfort with technology (out of 5; old version)'].sort_index(),
keep_for_small_version=False)
# End-of-course survey (average rating; 1-6)
# NOTE: data are missing from two students
save_metric('Final self-assessment (average of all questions)',None,
main_df['Final survey - average rating'].sort_index(),
keep_for_small_version=False)
# End-of-course survey - proficiency in Python (average rating; 1-6)
# NOTE: data are missing from two students
save_metric('Final self-assessment\nof Python skills',None,
main_df['Final survey - proficiency in Python'].sort_index(),
keep_for_small_version=True)
# End-of-course survey - comfort with technology (rating 1-6)
# NOTE: data are missing from two students
save_metric('Final self-assessment (comfort with technology only)',None,
main_df['Final survey - comfort with technology'].sort_index(),
keep_for_small_version=False)
Statistics on final grades, before re-calculating: Mean: 95.0692 Standard deviation: 5.691471631602265 Statistics on final grades, after re-calculating: Mean: 95.89795999999998 Standard deviation: 3.834526790448421 Statistics on collaboration: Fraction of class that exercised pair programming option on an assignment or project: 48.0 % Average fraction of students collaborating on any given assignment or project: 34.0 %
# Construct correlation matrices using Pandas
# Mask out correlations without significance (p >= 0.05)
# NOTE: Pearson tests for linearity, and Spearman rank correlation tests for monotonicity
# > Higher Pearson correlations indicate stronger positive linear relationships
# > Higher Spearman’s ρ values indicate stronger monotonic relationships, though not necessarily linear
metrics_to_use = metrics_small_version # use this to switch between <<metrics_small_version>> or <<metrics>>
corr_matrix_pearson = metrics_to_use.corr(method='pearson')
corr_matrix_spearman = metrics_to_use.corr(method='spearman')
for metric_name1 in metrics_to_use.keys():
for metric_name2 in metrics_to_use.keys():
pearson_r, pearson_p = stats.pearsonr(*[metrics_to_use[[metric_name1,metric_name2]].dropna().iloc[:,col].values for col in [0,1]])
spearman_r, spearman_p = stats.spearmanr(*[metrics_to_use[[metric_name1,metric_name2]].dropna().iloc[:,col].values for col in [0,1]])
if pearson_p >= 0.05: corr_matrix_pearson.loc[metric_name1][metric_name2] = np.NaN
if spearman_p >= 0.05: corr_matrix_spearman.loc[metric_name1][metric_name2] = np.NaN
# Choose highest of two correlation methods
corr_matrix_max = pd.concat([corr_matrix_pearson,corr_matrix_spearman]).max(level=0)
# Display correlation matrix
# (note: save using .render() to HTML, or .to_excel() to XSLX including conditional formatting)
corr_matrix_max.style.background_gradient(cmap='coolwarm',axis=None).set_precision(2)
# Output to HTML render
# corr_matrix_html = corr_matrix.style.background_gradient(cmap='coolwarm',axis=None).set_precision(2).render()
# corr_matrix_file = open('student_metric_correlation_matrix.html','w')
# corr_matrix_file.write(corr_matrix_html)
# corr_matrix_file.close()
# Export to Excel file
# corr_matrix.to_excel(filepath + 'Student metrics correlation matrix.xlsx')
<ipython-input-55-4973c37aef65>:17: FutureWarning: Using the level keyword in DataFrame and Series aggregations is deprecated and will be removed in a future version. Use groupby instead. df.median(level=1) should use df.groupby(level=1).median(). corr_matrix_max = pd.concat([corr_matrix_pearson,corr_matrix_spearman]).max(level=0) <ipython-input-55-4973c37aef65>:21: FutureWarning: this method is deprecated in favour of `Styler.format(precision=..)` corr_matrix_max.style.background_gradient(cmap='coolwarm',axis=None).set_precision(2)
Final grade | Python skills used in project | Pair programming experiences | Q&A forum days online | Q&A forum total contributions | Q&A forum answers only | Video minutes watched | Video minutes watched before class | Video minutes watched after class (for first time) | Prior coding experience | Final self-assessment of Python skills | |
---|---|---|---|---|---|---|---|---|---|---|---|
Final grade | 1.00 | 0.43 | 0.51 | 0.49 | nan | nan | nan | 0.64 | -0.41 | nan | nan |
Python skills used in project | 0.43 | 1.00 | nan | 0.48 | nan | 0.44 | 0.54 | nan | nan | nan | nan |
Pair programming experiences | 0.51 | nan | 1.00 | nan | nan | nan | nan | 0.50 | -0.43 | nan | nan |
Q&A forum days online | 0.49 | 0.48 | nan | 1.00 | nan | 0.46 | 0.48 | nan | nan | -0.40 | nan |
Q&A forum total contributions | nan | nan | nan | nan | 1.00 | 0.46 | nan | nan | nan | nan | nan |
Q&A forum answers only | nan | 0.44 | nan | 0.46 | 0.46 | 1.00 | 0.50 | nan | nan | nan | nan |
Video minutes watched | nan | 0.54 | nan | 0.48 | nan | 0.50 | 1.00 | 0.48 | nan | -0.41 | nan |
Video minutes watched before class | 0.64 | nan | 0.50 | nan | nan | nan | 0.48 | 1.00 | -0.64 | nan | nan |
Video minutes watched after class (for first time) | -0.41 | nan | -0.43 | nan | nan | nan | nan | -0.64 | 1.00 | nan | nan |
Prior coding experience | nan | nan | nan | -0.40 | nan | nan | -0.41 | nan | nan | 1.00 | 0.46 |
Final self-assessment of Python skills | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.46 | 1.00 |
# Pre-processing
corr_matrix_values = corr_matrix_max.values.copy()
corr_matrix_values[np.isnan(corr_matrix_values)] = 999.999 # set cells with NaN (no significant correlation) to 999.999, then 0.0, to display as white
corr_matrix_max_masked = np.ma.masked_array(corr_matrix_values,np.triu(corr_matrix_values) == 0)
corr_matrix_max_reorient = corr_matrix_max_masked[::-1,:]
corr_matrix_max_reorient[corr_matrix_max_reorient == 999.999] = 0.0
# Pre-processing (labels)
corr_matrix_pearson_reorient = corr_matrix_pearson.values.copy()[::-1,:]
corr_matrix_spearman_reorient = corr_matrix_spearman.values.copy()[::-1,:]
# Plot correlation matrix
plt.figure(figsize=(7.25,7.25),facecolor='w',dpi=300)
plt.pcolor(corr_matrix_max_reorient,cmap='coolwarm',edgecolors='k',vmin=-1.0,vmax=1.0)
plt.gca().spines['left'].set_visible(False)
plt.gca().spines['bottom'].set_visible(False)
plt.gca().axes.get_yaxis().set_visible(False)
plt.gca().axes.get_xaxis().set_visible(False)
for m in range(len(metrics_small_version_labels)):
plt.text(0.3+m,len(metrics_small_version_labels)+0.1,metrics_small_version_labels[m],
rotation=45)
plt.text(m-0.1,len(metrics_small_version_labels)-0.5-m,metrics_small_version_labels[m],
verticalalignment='center',horizontalalignment='right')
for row_idx in np.arange(-1,-1*len(corr_matrix_pearson_reorient)-1,-1):
for col_idx in np.arange(-1*row_idx - 1,len(corr_matrix_pearson_reorient)):
pearson = corr_matrix_pearson_reorient[row_idx,col_idx]
spearman = corr_matrix_spearman_reorient[row_idx,col_idx]
if np.isnan(pearson): pearson_label = 'n.s.'
else: pearson_label = '{0:.2f}'.format(pearson)
if np.isnan(spearman): spearman_label = 'n.s.'
else: spearman_label = '{0:.2f}'.format(spearman)
plt.text(col_idx+0.5,len(corr_matrix_pearson_reorient)+row_idx+0.65,pearson_label,horizontalalignment='center',verticalalignment='center')
plt.text(col_idx+0.5,len(corr_matrix_spearman_reorient)+row_idx+0.35,spearman_label,style='italic',horizontalalignment='center',verticalalignment='center')
x0 = 2.25; x1 = 4.75
y0 = 0.8; y1 = 1.8
plt.pcolor([x0,x1],[y0,y1],[[0]],cmap='coolwarm',edgecolors='k',vmin=-1.0,vmax=1.0)
plt.text((x0+x1)/2,y1+0.1,'Key:',weight='bold',horizontalalignment='center',verticalalignment='bottom')
plt.text((x0+x1)/2,y0+0.7,r"Pearson's $r$",horizontalalignment='center',verticalalignment='center')
plt.text((x0+x1)/2,y0+0.3,r"Spearman's $\rho$",style='italic',horizontalalignment='center',verticalalignment='center')
plt.text((x0+x1)/2,y0-0.15,'n.s. = not significant\n($p$ > 0.05)',horizontalalignment='center',verticalalignment='top')
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
cbar_axis = inset_axes(plt.gca(),width='3%',height='40%',loc='lower left',bbox_to_anchor=(-0.02,0.02,1,1),bbox_transform=plt.gca().transAxes,borderpad=0)
cbar = plt.colorbar(cax=cbar_axis)
cbar.set_label(label='Correlation coefficient',labelpad=8)
plt.savefig(export_to + 'Student metric correlation matrix.pdf',bbox_inches='tight')
# Setup
all_eval_names = eval_df.index.get_level_values('Evaluation').unique().to_numpy()
current_final_eval_names = np.array([name for name in all_eval_names if 'Final' in name])
past_final_eval_names = np.array([name for name in all_eval_names if '2020' not in name])
# Plot parameters
subplot_n = 0
nrows = 5
ncols = 4
def subplot_eval_question(y,x,subplot_n,category,question,column,label,
y_axis_percent=False,y_axis_scale=None,ylabel=None,drop_y=False,
ttest_one_sided=True,print_diagnostics=False):
subplot_n += 1
plt.subplot(y,x,subplot_n)
if type(question) == str:
current_question = question
past_question = question
elif type(question) == list:
current_question = question[0]
past_question = question[1]
if type(current_question) == str:
current_avg = np.mean([eval_df.loc[(name,category,current_question)][column] for name in current_final_eval_names])
elif type(current_question) == list:
current_avg = np.mean([np.mean([eval_df.loc[(name,category,this_question)][column] for name in current_final_eval_names]) for this_question in current_question])
if type(past_question) == str:
past_values = np.array([eval_df.loc[(name,category,past_question)][column] for name in past_final_eval_names])
elif type(past_question) == list:
past_values = np.array([np.mean([eval_df.loc[(name,category,this_question)][column] for this_question in past_question]) for name in past_final_eval_names])
if y_axis_percent:
current_avg = 100 * current_avg
past_values = 100 * past_values
past_avg = np.mean(past_values)
past_std = np.std(past_values)
plt.scatter(np.tile(0.92,len(past_values)),past_values,s=8**2,marker='x',color='0.3',alpha=0.5,zorder=1)
plt.errorbar(1.08,past_avg,yerr=past_std,capsize=6.5,elinewidth=1.5,capthick=1.5,marker='o',markersize=8,color='k')
plt.scatter(2,current_avg,s=8**2,marker='o',color='k',zorder=1)
if print_diagnostics:
print(question)
print(past_values)
print(current_avg)
# t-test for statistical significance in change between past years and 2020
if ttest_one_sided: p_val = stats.ttest_ind(past_values,current_avg,alternative='less').pvalue; color = 'k'
else: p_val = stats.ttest_ind(past_values,current_avg,alternative='two-sided').pvalue; color = '0.5'
if print_diagnostics: print('one-sided?',ttest_one_sided,p_val)
if p_val <= 0.05:
plt.plot([1.08,2],[past_avg,current_avg],ls='-',lw=1.5,c=color,zorder=0)
elif p_val <= 0.10:
plt.plot([1.08,2],[past_avg,current_avg],ls='--',lw=1.5,c=color,zorder=0)
plt.gca().spines['left'].set_position(('outward',5))
plt.gca().spines['bottom'].set_position(('outward',5))
plt.gca().spines['right'].set_visible(False)
plt.gca().spines['top'].set_visible(False)
plt.xlim([0.6,2.4])
if y_axis_scale == 5:
plt.ylim(3.0,5.05)
plt.yticks([3.0,3.5,4.0,4.5,5.0],labels=['\n3.0\n(Good)','','\n\n4.0\n(Very\ngood)','','\n5.0\n(Excellent)'],fontsize=8)
if drop_y: plt.yticks([3.0,3.5,4.0,4.5,5.0],labels=[3.0,'',4.0,'',5.0])
elif y_axis_scale == 7:
plt.ylim(4.0,7.0)
plt.yticks([4.0,4.5,5.0,5.5,6.0,6.5,7.0],labels=['\n4.0\n(Average)','','\n\n5.0\n(Somewhat\nhigher)','','\n6.0\n(Higher)','','\n\n7.0\n(Much\nhigher)'],fontsize=8)
if drop_y: plt.yticks([4.0,4.5,5.0,5.5,6.0,6.5,7.0],labels=[4.0,'',5.0,'',6.0,'',7.0])
else:
current_ylim = plt.ylim()
ylim_diff = current_ylim[1] - current_ylim[0]
plt.ylim([current_ylim[0]-ylim_diff/10,current_ylim[1]+ylim_diff/10])
if ylabel is not None: plt.ylabel(ylabel)
plt.xticks([1,2],labels=['2015-2019','2020'],fontsize=10)
plt.title(label,fontsize=12)
plt.grid(axis='y',alpha=0.3)
if y_axis_percent: plt.gca().yaxis.set_major_formatter(mtick.PercentFormatter(decimals=0))
return subplot_n
plt.figure(figsize=(11,12),facecolor='w',dpi=450)
subplot_n = subplot_eval_question(nrows,ncols,subplot_n,'Responses','Responses','Total responses','Number of responses',ttest_one_sided=False)
subplot_n = subplot_eval_question(nrows,ncols,subplot_n,'Responses','Responses','Total enrolled','Total students enrolled',ttest_one_sided=False)
subplot_n = subplot_eval_question(nrows,ncols,subplot_n,'Responses','Responses','Response rate','Response rate',y_axis_percent=True,ttest_one_sided=False)
subplot_n += 1
subplot_n = subplot_eval_question(nrows,ncols,subplot_n,'Time spent on course',
'On average, how many hours per week have you spent on this course, including attending classes, ' +
'doing readings, reviewing notes, writing papers and any other course related work?',
'Median','Time spent on course',ylabel='Hours per week',ttest_one_sided=False)
subplot_n = subplot_eval_question(nrows,ncols,subplot_n,'Time spent that was valuable',
'[ADDED] What percent of time spent on this course do you consider valuable?',
'Median','Time spent\nthat was valuable',ylabel='Fraction of total time',y_axis_percent=True)
subplot_n = subplot_eval_question(nrows,ncols,subplot_n,'Expected grade',
'What grade do you expect in this course?',
'Median','Expected grade',ylabel='GPA scale (0.0-4.0)',ttest_one_sided=False)
subplot_n = subplot_eval_question(nrows,ncols,subplot_n,'Student engagement (relative to other courses)',
'Do you expect your grade in this course to be:',
'Median','Expected grade\nrelative to other courses',y_axis_scale=7,ttest_one_sided=False)
subplot_n = subplot_eval_question(nrows,ncols,subplot_n,'Student engagement (relative to other courses)',
'The amount of effort you put into this course was:',
'Median','Effort invested\nrelative to other courses',y_axis_scale=7,ttest_one_sided=False)
subplot_n = subplot_eval_question(nrows,ncols,subplot_n,'Student engagement (relative to other courses)',
'The amount of effort to succeed in this course was:',
'Median','Effort to succeed\nrelative to other courses',y_axis_scale=7,drop_y=True,ttest_one_sided=False)
subplot_n = subplot_eval_question(nrows,ncols,subplot_n,'Student engagement (relative to other courses)',
['Relative to similar courses taught in person, your participation in this course was:',
'Your involvement in course (doing assignments, attending classes, etc.) was:'],
'Median','Participation\nrelative to other courses*',y_axis_scale=7,drop_y=True)
subplot_n = subplot_eval_question(nrows,ncols,subplot_n,'Student engagement (relative to other courses)',
'The intellectual challenge presented was:',
'Median','Intellectual challenge\nrelative to other courses',y_axis_scale=7,drop_y=True,ttest_one_sided=False)
subplot_n = subplot_eval_question(nrows,ncols,subplot_n,'Summative items',
['The remote learning course as a whole was:',
'The course as a whole was:'],
'Median','Course as a whole*',y_axis_scale=5)
subplot_n = subplot_eval_question(nrows,ncols,subplot_n,'Summative items',
'The course content was:',
'Median','Course content',y_axis_scale=5,drop_y=True)
subplot_n = subplot_eval_question(nrows,ncols,subplot_n,'Standard formative items',
[['Usefulness of reading assignments in understanding course content was:',
'Usefulness of written assignments in understanding course content was:',
'Usefulness of online resources in understanding course content was:'],
'Relevance and usefulness of course content were:'],
'Median','Usefulness of\ncourse content*',y_axis_scale=5,drop_y=True)
subplot_n = subplot_eval_question(nrows,ncols,subplot_n,'Standard formative items',
['The effectiveness of this remote course in facilitating my learning was:',
'Amount you learned in the course was:'],
'Median','Facilitation of learning*',y_axis_scale=5,drop_y=True)
subplot_n = subplot_eval_question(nrows,ncols,subplot_n,'Standard formative items',
'Evaluative and grading techniques (tests, papers, projects, etc.) were:',
'Median','Evaluation and\ngrading techniques',y_axis_scale=5)
subplot_n = subplot_eval_question(nrows,ncols,subplot_n,'Standard formative items',
'Reasonableness of assigned work was:',
'Median','Reasonableness\nof assigned work',y_axis_scale=5,drop_y=True)
subplot_n = subplot_eval_question(nrows,ncols,subplot_n,'Standard formative items',
['Organization of materials online was:',
'Course organization was:'],
'Median','Organization*',y_axis_scale=5,drop_y=True)
subplot_n = subplot_eval_question(nrows,ncols,subplot_n,'Standard formative items',
'Clarity of student responsibilities and requirements was:',
'Median','Clarity of student\nresponsibilities',y_axis_scale=5,drop_y=True)
# subplot_n = subplot_eval_question(nrows,ncols,subplot_n,'Summative items',
# "The instructor's contribution to the course was:",
# 'Median',"Instructor's contribution\nto the course",y_axis_scale=5)
# subplot_n = subplot_eval_question(nrows,ncols,subplot_n,'Summative items',
# "The instructor's effectiveness in teaching the subject matter was:",
# 'Median',"Effectiveness\nof instructor's teaching",y_axis_scale=5,drop_y=True)
# subplot_n = subplot_eval_question(nrows,ncols,subplot_n,'Standard formative items',
# ['Quality/helpfulness of instructor feedback was:',
# ['Explanations by instructor were:',
# "Instructor's ability to present alternative explanations when needed was:",
# "Instructor's interest in whether students learned was:",
# 'Answers to student questions were:']],
# 'Median','Quality of instructor\nanswers and feedback*',y_axis_scale=5,drop_y=True)
plt.tight_layout(h_pad=2.2)
plt.gcf().subplots_adjust(left=0.13,bottom=0.06)
def annotate_rows(x,y,label):
plt.annotate(label,xy=(x,y),xycoords='figure fraction',fontsize=16,fontweight='bold',rotation=90,
horizontalalignment='right',verticalalignment='center')
x_val = 0.035
top_y = 0.92
delta_y = 0.20
annotate_rows(x_val,top_y,'Responses')
annotate_rows(x_val,top_y-1*delta_y,'Time and grades')
annotate_rows(x_val,top_y-2*delta_y,'Engagement')
annotate_rows(x_val,top_y-3*delta_y,'Course overall')
annotate_rows(x_val,top_y-4*delta_y,'Course mechanics')
# annotate_rows(x_val,top_y-5*delta_y,'Instructor')
leg_handles = []
leg_handles.append(plt.plot([np.NaN,np.NaN],[np.NaN,np.NaN],c='k',ls='-',lw=1)[0])
leg_handles.append(plt.plot([np.NaN,np.NaN],[np.NaN,np.NaN],c='k',ls='--',lw=1)[0])
leg_handles.append(plt.plot([np.NaN,np.NaN],[np.NaN,np.NaN],c='0.5',ls='-',lw=1)[0])
leg_handles.append(plt.plot([np.NaN,np.NaN],[np.NaN,np.NaN],c='0.5',ls='--',lw=1)[0])
leg_labels = [r'One-tailed $t$-test ($p$ ≤ 0.05)',r'One-tailed $t$-test ($p$ ≤ 0.1)',
r'Two-tailed $t$-test ($p$ ≤ 0.05)',r'Two-tailed $t$-test ($p$ ≤ 0.1)']
plt.gcf().legend(leg_handles,leg_labels,loc='lower center',ncol=4,frameon=False)
plt.savefig(export_to + 'Course evaluations (full version).pdf',bbox_inches='tight')
# Small version of plot
# Parameters
subplot_n = 0
nrows = 2
ncols = 4
plt.figure(figsize=(11,5.0),facecolor='w',dpi=450)
subplot_n = subplot_eval_question(nrows,ncols,subplot_n,'Responses','Responses','Total enrolled','Total students enrolled')
subplot_n = subplot_eval_question(nrows,ncols,subplot_n,'Time spent on course',
'On average, how many hours per week have you spent on this course, including attending classes, ' +
'doing readings, reviewing notes, writing papers and any other course related work?',
'Median','Time spent on course',ylabel='Hours per week')
subplot_n = subplot_eval_question(nrows,ncols,subplot_n,'Time spent that was valuable',
'[ADDED] What percent of time spent on this course do you consider valuable?',
'Median','Time spent\nthat was valuable',ylabel='Fraction of total time',y_axis_percent=True)
subplot_n = subplot_eval_question(nrows,ncols,subplot_n,'Student engagement (relative to other courses)',
['Relative to similar courses taught in person, your participation in this course was:',
'Your involvement in course (doing assignments, attending classes, etc.) was:'],
'Median','Participation\nrelative to other courses',y_axis_scale=7)
subplot_n = subplot_eval_question(nrows,ncols,subplot_n,'Summative items',
['The remote learning course as a whole was:',
'The course as a whole was:'],
'Median','Course as a whole',y_axis_scale=5)
subplot_n = subplot_eval_question(nrows,ncols,subplot_n,'Summative items',
'The course content was:',
'Median','Course content',y_axis_scale=5,drop_y=True)
subplot_n = subplot_eval_question(nrows,ncols,subplot_n,'Standard formative items',
'Evaluative and grading techniques (tests, papers, projects, etc.) were:',
'Median','Evaluation and\ngrading techniques',y_axis_scale=5,drop_y=True)
subplot_n = subplot_eval_question(nrows,ncols,subplot_n,'Standard formative items',
['Organization of materials online was:',
'Course organization was:'],
'Median','Organization',y_axis_scale=5,drop_y=True)
plt.tight_layout(h_pad=2.2)
plt.gcf().subplots_adjust(left=0.13,bottom=0.16)
leg_handles = []
leg_handles.append(plt.plot([np.NaN,np.NaN],[np.NaN,np.NaN],c='k',ls='-',lw=1)[0])
leg_handles.append(plt.plot([np.NaN,np.NaN],[np.NaN,np.NaN],c='k',ls='--',lw=1)[0])
# leg_handles.append(plt.plot([np.NaN,np.NaN],[np.NaN,np.NaN],c='0.5',ls='-',lw=1)[0])
# leg_handles.append(plt.plot([np.NaN,np.NaN],[np.NaN,np.NaN],c='0.5',ls='--',lw=1)[0])
leg_labels = [r'$p$ ≤ 0.05',r'$p$ ≤ 0.1']
# r'Two-tailed $t$-test ($p$ ≤ 0.05)',r'Two-tailed $t$-test ($p$ ≤ 0.1)'
plt.gcf().legend(leg_handles,leg_labels,loc='lower center',ncol=len(leg_labels),frameon=False)
plt.savefig(export_to + 'Course evaluations (small version).pdf',bbox_inches='tight')
# See above for provenance of metrics
prior_experience = main_df['Assignment #0 - prior coding experience (out of 5; new version)'].sort_index()
grade_diff_recalc = grades_recalc - grades_recalc.mean()
grade_diff_std = grade_diff_recalc / grade_diff_recalc.std()
# Dichotomize by less vs. more experience
grades_less_experience = grade_diff_recalc[prior_experience < 3]
grades_more_experience = grade_diff_recalc[prior_experience >= 3]
grades_less_experience_std = grade_diff_std[prior_experience < 3]
grades_more_experience_std = grade_diff_std[prior_experience >= 3]
# Calculate IQR(25%-75%)
iqr_less_experience = [grades_less_experience.quantile(q=0.25),grades_less_experience.quantile(q=0.75)]
iqr_more_experience = [grades_more_experience.quantile(q=0.25),grades_more_experience.quantile(q=0.75)]
iqr_less_experience_std = [grades_less_experience_std.quantile(q=0.25),grades_less_experience_std.quantile(q=0.75)]
iqr_more_experience_std = [grades_more_experience_std.quantile(q=0.25),grades_more_experience_std.quantile(q=0.75)]
# Basic plots
plt.figure(figsize=(8,4),facecolor='w',dpi=450)
plt.subplot(1,2,1)
plt.scatter(prior_experience,grade_diff_recalc,c='k',zorder=2)
plt.xlabel('Prior coding experience (less to more)')
plt.ylabel('Final grade (% difference\nfrom class average)')
plt.grid(alpha=0.5,lw=0.5,zorder=1)
drop_spines()
plt.subplot(1,2,2)
plt.errorbar(1,grades_less_experience.median(),
yerr=np.array([[grades_less_experience.median()-iqr_less_experience[0]],
[iqr_less_experience[1]-grades_less_experience.median()]]),
marker='o',mfc='k',mec='k',ecolor='k',capsize=5)
plt.errorbar(2,grades_more_experience.median(),
yerr=np.array([[grades_more_experience.median()-iqr_more_experience[0]],
[iqr_more_experience[1]-grades_more_experience.median()]]),
marker='o',mfc='k',mec='k',ecolor='k',capsize=5)
plt.xlim([0.5,2.5])
plt.xticks([1,2],['None/little','Some/moderate/lots'])
plt.xlabel('\n Amount of prior coding experience')
plt.ylabel('Final grade (% difference\nfrom class average)')
plt.grid(alpha=0.5,lw=0.5,zorder=1)
drop_spines()
plt.tight_layout(rect=[0,0,1,0.94],w_pad=6)
# Use t-test to test if average grades within dichotomized samples are different
# Because p >> 0.05, cannot reject null hypothesis that two samples are drawn from the same population or distribution
t, p = stats.ttest_ind(grades_less_experience,grades_more_experience)
print(t, p)
-0.14350095290025472 0.8871444197366927
# See above for provenance of metrics
grade_diff_std = grade_diff_recalc / grade_diff_recalc.std()
# Dichotomize by less vs. more experience
grades_less_experience_std = grade_diff_std[prior_experience < 3]
grades_more_experience_std = grade_diff_std[prior_experience >= 3]
# Calculate IQR(25%-75%)
iqr_less_experience_std = [grades_less_experience_std.quantile(q=0.25),grades_less_experience_std.quantile(q=0.75)]
iqr_more_experience_std = [grades_more_experience_std.quantile(q=0.25),grades_more_experience_std.quantile(q=0.75)]
# Basic plots
plt.figure(figsize=(4,3),facecolor='w',dpi=450)
plt.errorbar(1.07,grades_less_experience_std.median(),
yerr=np.array([[grades_less_experience_std.median()-iqr_less_experience_std[0]],
[iqr_less_experience_std[1]-grades_less_experience_std.median()]]),
marker='o',mfc='k',mec='k',ecolor='k',capsize=5)
plt.errorbar(2.07,grades_more_experience_std.median(),
yerr=np.array([[grades_more_experience_std.median()-iqr_more_experience_std[0]],
[iqr_more_experience_std[1]-grades_more_experience_std.median()]]),
marker='o',mfc='k',mec='k',ecolor='k',capsize=5)
for pt in grades_less_experience_std: plt.scatter(0.93,pt,s=25,marker='x',c='k',alpha=0.35)
for pt in grades_more_experience_std: plt.scatter(1.93,pt,s=25,marker='x',c='k',alpha=0.35)
plt.xlim([0.5,2.5])
plt.xticks([1,2],['None/little','Some/moderate/lots'])
plt.xlabel('\n Amount of prior coding experience')
plt.ylabel('Final grade\n($\sigma$ from class average)')
# plt.ylim([-0.9,0.9])
plt.grid(alpha=0.5,lw=0.5,zorder=1)
drop_spines()
plt.savefig(export_to + 'Prior coding experience vs. grades.pdf',bbox_inches='tight')