]box on -style=max -trains=tree -fns=on
┌→─────────────────────────────────────┐ │Was ON -style=max -trains=tree -fns=on│ └──────────────────────────────────────┘
∊
(Epsilon)¶∊
(Enlist)¶⎕←mat←2 3⍴⍳6
┌→────┐ ↓1 2 3│ │4 5 6│ └~────┘
∊ 0 mat (7 8) 'nine'
┌→─────────────────────┐ │0 1 2 3 4 5 6 7 8 nine│ └+─────────────────────┘
∊
(Member of)¶'abc' 4 ∊ 4 'ab' 'abcd'
┌→──┐ │0 1│ └~──┘
mat←2 3⍴⍳6
mat ∊ 6 2 7 4
┌→────┐ ↓0 1 0│ │1 0 1│ └~────┘
⍷
(Epsilon Underbar)¶⍷
(Find)¶1 ⍷ 3 1 4 1 5 9 2
┌→────────────┐ │0 1 0 1 0 0 0│ └~────────────┘
1 4 ⍷ 3 1 4 1 5 9 2
┌→────────────┐ │0 1 0 0 0 0 0│ └~────────────┘
'ana' ⍷ 'Banana'
┌→──────────┐ │0 1 0 1 0 0│ └~──────────┘
X ← 2 2 ⍴ 0 1 1 0
Y ← 4 4 ⍴ 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
X Y
┌→────────────────┐ │ ┌→──┐ ┌→──────┐ │ │ ↓0 1│ ↓0 1 0 0│ │ │ │1 0│ │1 0 0 1│ │ │ └~──┘ │0 0 1 0│ │ │ │0 1 0 0│ │ │ └~──────┘ │ └∊────────────────┘
X ⍷ Y
┌→──────┐ ↓1 0 0 0│ │0 0 1 0│ │0 1 0 0│ │0 0 0 0│ └~──────┘
∩
(Up shoe)¶∩
(Intersection)¶'ABRA'∩'CAR'
┌→──┐ │ARA│ └───┘
22 'ab' 'fg' ∩ 'a' 'ab' 22
┌→────────┐ │ ┌→─┐ │ │ 22 │ab│ │ │ └──┘ │ └∊────────┘
∪
(Down shoe)¶∪
(Unique)¶a ← 2 3 4 2 3 4 5
∪a
┌→──────┐ │2 3 4 5│ └~──────┘
(≠a)/a
┌→──────┐ │2 3 4 5│ └~──────┘
∪ 'ab' 'ba' 'ab' 1 1 2
┌→──────────────┐ │ ┌→─┐ ┌→─┐ │ │ │ab│ │ba│ 1 2 │ │ └──┘ └──┘ │ └∊──────────────┘
∪
(Union)¶'ABRA'∪'CAR'
┌→────┐ │ABRAC│ └─────┘
22 'ab' 'fg' ∪ 'a' 'ab' 22
┌→───────────────┐ │ ┌→─┐ ┌→─┐ │ │ 22 │ab│ │fg│ a │ │ └──┘ └──┘ - │ └∊───────────────┘
⌷
(Squad)¶⌷
(Materialise)¶For ⌷ ⍵
: If ⍵ is an array, returns ⍵. For a class/COM/.Net object, it materialises the items.
⌷
(Index)¶v ← 2×⍳12
3⌷v
6
(⊂3 5) ⌷v
┌→───┐ │6 10│ └~───┘
⎕ ← mat ← 3 4 ⍴⍳12
┌→─────────┐ ↓1 2 3 4│ │5 6 7 8│ │9 10 11 12│ └~─────────┘
2 3 ⌷ mat
7
⍒
(Grade Down)¶⍒
(Grade Down)¶⍒ 33 11 44 66 22
┌→────────┐ │4 3 1 5 2│ └~────────┘
a ← 33 11 44 66 22
a[⍒a]
┌→─────────────┐ │66 44 33 22 11│ └~─────────────┘
a⌷⍨⊂⍒a
┌→─────────────┐ │66 44 33 22 11│ └~─────────────┘
{⍵[⍋⍵]}
and {(⊂⍋⍵)⌷⍵}
are sort idioms (special cased for performance)
sort ← ⌷⍨∘⊂∘⍒⍨
sort a
┌→─────────────┐ │66 44 33 22 11│ └~─────────────┘
tsort ← (⊂∘⍒)⌷⊢ ⍝ h/t Rory Kemp
tsort a
┌→─────────────┐ │66 44 33 22 11│ └~─────────────┘
⍒
(Dyadic Grade Down)¶a ← 'abcdefgabcdefg'
b ← 'cgf' ⍒ a
a⌷⍨⊂b
┌→─────────────┐ │abdeabdeffggcc│ └──────────────┘
⍋
(Grade Up)¶⍋
(Grade Up)¶⍋ 33 11 44 66 22
┌→────────┐ │2 5 1 3 4│ └~────────┘
a ← 33 11 44 66 22
a[⍋a]
┌→─────────────┐ │11 22 33 44 66│ └~─────────────┘
a⌷⍨⊂⍋a
┌→─────────────┐ │11 22 33 44 66│ └~─────────────┘
⍒
(Dyadic Grade Down)¶a ← 'abcdefgabcdefg'
b ← 'cgf' ⍋ a
a⌷⍨⊂b
┌→─────────────┐ │ccggffabdeabde│ └──────────────┘
⌽
(Circle Stile)¶⌽
(Reverse)¶⌽ 'trams'
┌→────┐ │smart│ └─────┘
⎕ ← mat ← 3 4 ⍴⍳12
┌→─────────┐ ↓1 2 3 4│ │5 6 7 8│ │9 10 11 12│ └~─────────┘
⌽ mat
┌→─────────┐ ↓ 4 3 2 1│ │ 8 7 6 5│ │12 11 10 9│ └~─────────┘
⌽
(Rotate)¶1 ⌽ 'HatStand'
┌→───────┐ │atStandH│ └────────┘
3 ⌽ 'HatStand'
┌→───────┐ │StandHat│ └────────┘
¯2 ⌽ 1 2 3 4 5 6
┌→──────────┐ │5 6 1 2 3 4│ └~──────────┘
⎕ ← mat ← 3 4 ⍴⍳12
┌→─────────┐ ↓1 2 3 4│ │5 6 7 8│ │9 10 11 12│ └~─────────┘
¯1 ⌽ mat
┌→─────────┐ ↓ 4 1 2 3│ │ 8 5 6 7│ │12 9 10 11│ └~─────────┘
1 ¯1 2 ⌽ mat
┌→─────────┐ ↓ 2 3 4 1│ │ 8 5 6 7│ │11 12 9 10│ └~─────────┘
⊖
(Circle Bar)¶⊖
(Reverse First)¶⊖ 'trams'
┌→────┐ │smart│ └─────┘
mat ← 3 4 ⍴⍳12
⊖ mat
┌→─────────┐ ↓9 10 11 12│ │5 6 7 8│ │1 2 3 4│ └~─────────┘
⊖
(Rotate First)¶3 ⊖ 'HatStand'
┌→───────┐ │StandHat│ └────────┘
mat ← 3 4 ⍴⍳12
¯1 ⊖ mat
┌→─────────┐ ↓9 10 11 12│ │1 2 3 4│ │5 6 7 8│ └~─────────┘
⍉
(Circle Bar)¶⍉
(Transpose)¶mat ← 3 4 ⍴⍳12
⍉ mat
┌→─────┐ ↓1 5 9│ │2 6 10│ │3 7 11│ │4 8 12│ └~─────┘
⎕←cube ← 2 3 4 ⍴⍳24
┌┌→──────────┐ ↓↓ 1 2 3 4│ ││ 5 6 7 8│ ││ 9 10 11 12│ ││ │ ││13 14 15 16│ ││17 18 19 20│ ││21 22 23 24│ └└~──────────┘
⍉ cube
┌┌→────┐ ↓↓ 1 13│ ││ 5 17│ ││ 9 21│ ││ │ ││ 2 14│ ││ 6 18│ ││10 22│ ││ │ ││ 3 15│ ││ 7 19│ ││11 23│ ││ │ ││ 4 16│ ││ 8 20│ ││12 24│ └└~────┘
⍴⍉ cube
┌→────┐ │4 3 2│ └~────┘
⊖
(Rotate First)¶mat ← 3 4 ⍴⍳12
2 1 ⍉ mat
┌→─────┐ ↓1 5 9│ │2 6 10│ │3 7 11│ │4 8 12│ └~─────┘
1 1 ⍉ mat
┌→─────┐ │1 6 11│ └~─────┘
⎕ ← cube ← 2 3 4 ⍴⍳24
┌┌→──────────┐ ↓↓ 1 2 3 4│ ││ 5 6 7 8│ ││ 9 10 11 12│ ││ │ ││13 14 15 16│ ││17 18 19 20│ ││21 22 23 24│ └└~──────────┘
⍴ 2 1 3 ⍉ cube
┌→────┐ │3 2 4│ └~────┘
1 1 1⍉ cube
┌→───┐ │1 18│ └~───┘
2 1 1⍉ cube
┌→────┐ ↓ 1 13│ │ 6 18│ │11 23│ └~────┘
⌺
(Quad Diamond)¶⌺
(Stencil)¶{⊂⍺ ⍵}⌺3 3⊢3 3⍴⍳12
┌→──────────────────────────────────────────────────────────┐ ↓ ┌→──────────────┐ ┌→──────────────┐ ┌→───────────────┐ │ │ │ ┌→──┐ ┌→────┐ │ │ ┌→──┐ ┌→────┐ │ │ ┌→───┐ ┌→────┐ │ │ │ │ │1 1│ ↓0 0 0│ │ │ │1 0│ ↓0 0 0│ │ │ │1 ¯1│ ↓0 0 0│ │ │ │ │ └~──┘ │0 1 2│ │ │ └~──┘ │1 2 3│ │ │ └~───┘ │2 3 0│ │ │ │ │ │0 4 5│ │ │ │4 5 6│ │ │ │5 6 0│ │ │ │ │ └~────┘ │ │ └~────┘ │ │ └~────┘ │ │ │ └∊──────────────┘ └∊──────────────┘ └∊───────────────┘ │ │ ┌→──────────────┐ ┌→──────────────┐ ┌→───────────────┐ │ │ │ ┌→──┐ ┌→────┐ │ │ ┌→──┐ ┌→────┐ │ │ ┌→───┐ ┌→────┐ │ │ │ │ │0 1│ ↓0 1 2│ │ │ │0 0│ ↓1 2 3│ │ │ │0 ¯1│ ↓2 3 0│ │ │ │ │ └~──┘ │0 4 5│ │ │ └~──┘ │4 5 6│ │ │ └~───┘ │5 6 0│ │ │ │ │ │0 7 8│ │ │ │7 8 9│ │ │ │8 9 0│ │ │ │ │ └~────┘ │ │ └~────┘ │ │ └~────┘ │ │ │ └∊──────────────┘ └∊──────────────┘ └∊───────────────┘ │ │ ┌→───────────────┐ ┌→───────────────┐ ┌→────────────────┐ │ │ │ ┌→───┐ ┌→────┐ │ │ ┌→───┐ ┌→────┐ │ │ ┌→────┐ ┌→────┐ │ │ │ │ │¯1 1│ ↓0 4 5│ │ │ │¯1 0│ ↓4 5 6│ │ │ │¯1 ¯1│ ↓5 6 0│ │ │ │ │ └~───┘ │0 7 8│ │ │ └~───┘ │7 8 9│ │ │ └~────┘ │8 9 0│ │ │ │ │ │0 0 0│ │ │ │0 0 0│ │ │ │0 0 0│ │ │ │ │ └~────┘ │ │ └~────┘ │ │ └~────┘ │ │ │ └∊───────────────┘ └∊───────────────┘ └∊────────────────┘ │ └∊──────────────────────────────────────────────────────────┘
s←2 2⍴3 3 2 2 ⍝ 2x2 stride with 3x3 kernel
({⊂⍵}⌺s)3 4⍴⍳12
┌→────────────────────┐ ↓ ┌→────┐ ┌→────┐ │ │ ↓0 0 0│ ↓0 0 0│ │ │ │0 1 2│ │2 3 4│ │ │ │0 5 6│ │6 7 8│ │ │ └~────┘ └~────┘ │ │ ┌→─────┐ ┌→───────┐ │ │ ↓0 5 6│ ↓ 6 7 8│ │ │ │0 9 10│ │10 11 12│ │ │ │0 0 0│ │ 0 0 0│ │ │ └~─────┘ └~───────┘ │ └∊────────────────────┘
@
(At)¶@
(At)¶(0@2 4) ⍳6
┌→──────────┐ │1 0 3 0 5 6│ └~──────────┘
(3 1@2 4) ⍳6
┌→──────────┐ │1 3 3 1 5 6│ └~──────────┘
÷@2 4 ⍳6
┌→───────────────┐ │1 0.5 3 0.25 5 6│ └~───────────────┘
10 (×@2 4) ⍳5
┌→──────────┐ │1 20 3 40 5│ └~──────────┘
0@(2∘|)⍳6
┌→──────────┐ │0 2 0 4 0 6│ └~──────────┘
⌽@(2∘|)⍳6
┌→──────────┐ │5 2 3 4 1 6│ └~──────────┘
&
(Ampersand)¶&
(Spawn)¶&
spawns a new thread in which f is applied to its argument(s).
÷&4 ⍝ Reciprocal in background
→
(Branch)¶Branching is superseded by the more modern control structures such as :If ... :EndIf.
⍞
(Print without CR, or stdin)¶When ⍞ is assigned with a vector or a scalar, the array is displayed without the normal ending new-line character.
⍞←'2+2' ⋄ ⍞←'=' ⋄ ⍞←2+2
2+2=4
When ⍞ is referenced, terminal input is expected without any specific prompt, and the response is returned as a character vector (however this doesn't work in Jupyter).
⎕←j ← 4 6 ⍴ '{ "a":1,"b":42} '
┌→─────┐ ↓{ │ │"a":1,│ │"b":42│ │} │ └──────┘
⍠
Variant¶Used to pass options/variants to some system functions, such as JSON convert.
⎕←mat←(⎕JSON⍠('Format' 'M'))j
┌→────────────┐ ↓ ┌⊖┐ ┌⊖┐ │ │ 0 │ │ │0│ 1 │ │ └─┘ └~┘ │ │ ┌→┐ │ │ 1 │a│ 1 3 │ │ └─┘ │ │ ┌→┐ │ │ 1 │b│ 42 3 │ │ └─┘ │ └∊────────────┘
1(⎕JSON⍠('Format' 'M')) mat
┌→─────────────┐ │{"a":1,"b":42}│ └──────────────┘
⌶
(I-Beam)¶I-Beam is a monadic operator that provides a range of system related services. WARNING: Although documentation is provided for I-Beam functions, any service provided using I-Beam should be considered as "experimental" and subject to change. As at Aug-2022 services include SVD, probability distributions, and much more.
⍎
(Hydrant)¶⍎
(Execute expression)¶⍎ '1+1'
2
V ← 1 2 3
⍎ 'V'
┌→────┐ │1 2 3│ └~────┘
A← ⍎'1+1 ⋄ 2+2'
2
A
4
⍎
(Execute expression in given namespace)¶X must be a namespace reference or a simple character scalar or vector representing the name of a namespace in which the expression is to be executed.
⍕
(Thorn)¶⍕
(Format)¶4 5 6 ⍝ These are numbers (see the `~` in bottom left)
┌→────┐ │4 5 6│ └~────┘
⍕ 4 5 6 ⍝ These are characters (no `~` in bottom left)
┌→────┐ │4 5 6│ └─────┘
⍕
(Format By Specification)¶Field-width and number of decimal places:
6 2 ⍕ 3.125 0.002
┌→───────────┐ │ 3.13 0.00│ └────────────┘