%matplotlib inline
from fastai.basics import *
Get the 'pickled' MNIST dataset from http://deeplearning.net/data/mnist/mnist.pkl.gz. We're going to treat it as a standard flat dataset with fully connected layers, rather than using a CNN.
从这里 下载pickled MNIST数据集。我们将用标准的平面文件全连接处理数据,而不是用卷积神经网络(CNN)。
path = Config().data_path()/'mnist'
path.ls()
[PosixPath('/home/ubuntu/.fastai/data/mnist/mnist.pkl.gz')]
with gzip.open(path/'mnist.pkl.gz', 'rb') as f:
((x_train, y_train), (x_valid, y_valid), _) = pickle.load(f, encoding='latin-1')
plt.imshow(x_train[0].reshape((28,28)), cmap="gray")
x_train.shape
(50000, 784)
x_train,y_train,x_valid,y_valid = map(torch.tensor, (x_train,y_train,x_valid,y_valid))
n,c = x_train.shape
x_train.shape, y_train.min(), y_train.max()
(torch.Size([50000, 784]), tensor(0), tensor(9))
In lesson2-sgd we did these things ourselves:
在第二节的sgd例子中,我们定义了以下的函数:
x = torch.ones(n,2)
def mse(y_hat, y): return ((y_hat-y)**2).mean()
y_hat = x@a
Now instead we'll use PyTorch's functions to do it for us, and also to handle mini-batches (which we didn't do last time, since our dataset was so small).
现在我们用PyTorch的函数来帮我们完成这个工作,并且进行数据的迷你批次处理(上次因为数据集比较小,我们没有这样做)。
bs=64
train_ds = TensorDataset(x_train, y_train)
valid_ds = TensorDataset(x_valid, y_valid)
data = DataBunch.create(train_ds, valid_ds, bs=bs)
--------------------------------------------------------------------------- NameError Traceback (most recent call last) <ipython-input-1-ba063487d505> in <module> 1 bs=64 ----> 2 train_ds = TensorDataset(x_train, y_train) 3 valid_ds = TensorDataset(x_valid, y_valid) 4 data = DataBunch.create(train_ds, valid_ds, bs=bs) NameError: name 'TensorDataset' is not defined
x,y = next(iter(data.train_dl))
x.shape,y.shape
(torch.Size([64, 784]), torch.Size([64]))
class Mnist_Logistic(nn.Module):
def __init__(self):
super().__init__()
self.lin = nn.Linear(784, 10, bias=True)
def forward(self, xb): return self.lin(xb)
model = Mnist_Logistic().cuda()
model
Mnist_Logistic( (lin): Linear(in_features=784, out_features=10, bias=True) )
model.lin
Linear(in_features=784, out_features=10, bias=True)
model(x).shape
torch.Size([64, 10])
[p.shape for p in model.parameters()]
[torch.Size([10, 784]), torch.Size([10])]
lr=2e-2
loss_func = nn.CrossEntropyLoss()
def update(x,y,lr):
wd = 1e-5
y_hat = model(x)
# weight decay
w2 = 0.
for p in model.parameters(): w2 += (p**2).sum()
# add to regular loss
loss = loss_func(y_hat, y) + w2*wd
loss.backward()
with torch.no_grad():
for p in model.parameters():
p.sub_(lr * p.grad)
p.grad.zero_()
return loss.item()
losses = [update(x,y,lr) for x,y in data.train_dl]
plt.plot(losses);
class Mnist_NN(nn.Module):
def __init__(self):
super().__init__()
self.lin1 = nn.Linear(784, 50, bias=True)
self.lin2 = nn.Linear(50, 10, bias=True)
def forward(self, xb):
x = self.lin1(xb)
x = F.relu(x)
return self.lin2(x)
model = Mnist_NN().cuda()
losses = [update(x,y,lr) for x,y in data.train_dl]
plt.plot(losses);
model = Mnist_NN().cuda()
def update(x,y,lr):
opt = optim.Adam(model.parameters(), lr)
y_hat = model(x)
loss = loss_func(y_hat, y)
loss.backward()
opt.step()
opt.zero_grad()
return loss.item()
losses = [update(x,y,1e-3) for x,y in data.train_dl]
plt.plot(losses);
learn = Learner(data, Mnist_NN(), loss_func=loss_func, metrics=accuracy)
--------------------------------------------------------------------------- AttributeError Traceback (most recent call last) <ipython-input-28-7aa74a9f84cb> in <module> ----> 1 learn = Learner(data, Mnist_NN(), loss_func=loss_func, metrics=accuracy) <string> in __init__(self, data, model, opt_func, loss_func, metrics, true_wd, bn_wd, wd, train_bn, path, model_dir, callback_fns, callbacks, layer_groups, add_time) ~/fastai/fastai/basic_train.py in __post_init__(self) 154 (self.path/self.model_dir).mkdir(parents=True, exist_ok=True) 155 self.model = self.model.to(self.data.device) --> 156 self.loss_func = ifnone(self.loss_func, self.data.loss_func) 157 self.metrics=listify(self.metrics) 158 if not self.layer_groups: self.layer_groups = [nn.Sequential(*flatten_model(self.model))] ~/fastai/fastai/basic_data.py in __getattr__(self, k) 120 return cls(*dls, path=path, device=device, dl_tfms=dl_tfms, collate_fn=collate_fn, no_check=no_check) 121 --> 122 def __getattr__(self,k:int)->Any: return getattr(self.train_dl, k) 123 def __setstate__(self,data:Any): self.__dict__.update(data) 124 ~/fastai/fastai/basic_data.py in __getattr__(self, k) 36 37 def __len__(self)->int: return len(self.dl) ---> 38 def __getattr__(self,k:str)->Any: return getattr(self.dl, k) 39 def __setstate__(self,data:Any): self.__dict__.update(data) 40 ~/fastai/fastai/basic_data.py in DataLoader___getattr__(dl, k) 18 torch.utils.data.DataLoader.__init__ = intercept_args 19 ---> 20 def DataLoader___getattr__(dl, k:str)->Any: return getattr(dl.dataset, k) 21 DataLoader.__getattr__ = DataLoader___getattr__ 22 AttributeError: 'TensorDataset' object has no attribute 'loss_func'
%debug
> /home/ubuntu/fastai/fastai/basic_data.py(20)DataLoader___getattr__() 18 torch.utils.data.DataLoader.__init__ = intercept_args 19 ---> 20 def DataLoader___getattr__(dl, k:str)->Any: return getattr(dl.dataset, k) 21 DataLoader.__getattr__ = DataLoader___getattr__ 22 ipdb> u > /home/ubuntu/fastai/fastai/basic_data.py(38)__getattr__() 36 37 def __len__(self)->int: return len(self.dl) ---> 38 def __getattr__(self,k:str)->Any: return getattr(self.dl, k) 39 def __setstate__(self,data:Any): self.__dict__.update(data) 40 ipdb> print(k) loss_func ipdb> q
learn.lr_find()
learn.recorder.plot()
LR Finder is complete, type {learner_name}.recorder.plot() to see the graph.
learn.fit_one_cycle(1, 1e-2)
epoch | train_loss | valid_loss | accuracy |
---|---|---|---|
1 | 0.129131 | 0.125927 | 0.963500 |
learn.recorder.plot_lr(show_moms=True)
learn.recorder.plot_losses()