import fastai
from fastai.vision import *
from fastai.callbacks import *
from fastai.utils.mem import *
from torchvision.models import vgg16_bn
torch.cuda.set_device(0)
path = Path('data/imagenet')
path_hr = path/'train'
path_lr = path/'small-64/train'
path_mr = path/'small-256/train'
# note: this notebook relies on models created by lesson7-superres.ipynb
path_pets = untar_data(URLs.PETS)
il = ImageList.from_folder(path_hr)
def resize_one(fn, i, path, size):
dest = path/fn.relative_to(path_hr)
dest.parent.mkdir(parents=True, exist_ok=True)
img = PIL.Image.open(fn)
targ_sz = resize_to(img, size, use_min=True)
img = img.resize(targ_sz, resample=PIL.Image.BILINEAR).convert('RGB')
img.save(dest, quality=60)
assert path.exists(), f"need imagenet dataset @ {path}"
# create smaller image sets the first time this nb is run
sets = [(path_lr, 64), (path_mr, 256)]
for p,size in sets:
if not p.exists():
print(f"resizing to {size} into {p}")
parallel(partial(resize_one, path=p, size=size), il.items)
free = gpu_mem_get_free_no_cache()
# the max size of the test image depends on the available GPU RAM
if free > 8200: bs,size=16,256
else: bs,size=8,256
print(f"using bs={bs}, size={size}, have {free}MB of GPU RAM free")
arch = models.resnet34
# sample = 0.1
sample = False
tfms = get_transforms()
using bs=8, size=256, have 8109MB of GPU RAM free
src = ImageImageList.from_folder(path_lr)
if sample: src = src.filter_by_rand(sample, seed=42)
src = src.split_by_rand_pct(0.1, seed=42)
def get_data(bs,size):
data = (src.label_from_func(lambda x: path_hr/x.relative_to(path_lr))
.transform(get_transforms(max_zoom=2.), size=size, tfm_y=True)
.databunch(bs=bs).normalize(imagenet_stats, do_y=True))
data.c = 3
return data
data = get_data(bs,size)
def gram_matrix(x):
n,c,h,w = x.size()
x = x.view(n, c, -1)
return (x @ x.transpose(1,2))/(c*h*w)
vgg_m = vgg16_bn(True).features.cuda().eval()
requires_grad(vgg_m, False)
blocks = [i-1 for i,o in enumerate(children(vgg_m)) if isinstance(o,nn.MaxPool2d)]
base_loss = F.l1_loss
class FeatureLoss(nn.Module):
def __init__(self, m_feat, layer_ids, layer_wgts):
super().__init__()
self.m_feat = m_feat
self.loss_features = [self.m_feat[i] for i in layer_ids]
self.hooks = hook_outputs(self.loss_features, detach=False)
self.wgts = layer_wgts
self.metric_names = ['pixel',] + [f'feat_{i}' for i in range(len(layer_ids))
] + [f'gram_{i}' for i in range(len(layer_ids))]
def make_features(self, x, clone=False):
self.m_feat(x)
return [(o.clone() if clone else o) for o in self.hooks.stored]
def forward(self, input, target):
out_feat = self.make_features(target, clone=True)
in_feat = self.make_features(input)
self.feat_losses = [base_loss(input,target)]
self.feat_losses += [base_loss(f_in, f_out)*w
for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)]
self.feat_losses += [base_loss(gram_matrix(f_in), gram_matrix(f_out))*w**2 * 5e3
for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)]
self.metrics = dict(zip(self.metric_names, self.feat_losses))
return sum(self.feat_losses)
def __del__(self): self.hooks.remove()
feat_loss = FeatureLoss(vgg_m, blocks[2:5], [5,15,2])
wd = 1e-3
learn = unet_learner(data, arch, wd=wd, loss_func=feat_loss, callback_fns=LossMetrics, blur=True, norm_type=NormType.Weight)
gc.collect();
learn.unfreeze()
# relies on first running lesson7-superres.ipynb which created the following model
learn.load((path_pets/'small-96'/'models'/'2b').absolute());
learn.fit_one_cycle(1, slice(1e-6,1e-4))
epoch | train_loss | valid_loss | pixel | feat_0 | feat_1 | feat_2 | gram_0 | gram_1 | gram_2 |
---|---|---|---|---|---|---|---|---|---|
1 | 2.347123 | 2.385141 | 0.229566 | 0.293816 | 0.322328 | 0.146045 | 0.460049 | 0.638133 | 0.295204 |
learn.save('imagenet')
learn.show_results(rows=3, imgsize=5)
learn.recorder.plot_losses()
_=learn.load('imagenet')
data_mr = (ImageImageList.from_folder(path_mr).split_by_rand_pct(0.1, seed=42)
.label_from_func(lambda x: path_hr/x.relative_to(path_mr))
.transform(get_transforms(), size=(820,1024), tfm_y=True)
.databunch(bs=2).normalize(imagenet_stats, do_y=True))
learn.data = data_mr
# here put some image you want to enhance, e.g. the original notebook uses a single video frame from a powerpoint presentation on dropout paper
fn = path_pets/'other'/'dropout.jpg'
img = open_image(fn); img.shape
torch.Size([3, 850, 1042])
_,img_hr,b = learn.predict(img)
show_image(img, figsize=(18,15), interpolation='nearest');
Image(img_hr).show(figsize=(18,15))
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).