from fastai.gen_doc.nbdoc import *
from fastai.vision import *
from fastai.text import *
from fastai.callbacks import *
from fastai.basic_train import *
from fastai.train import *
from fastai import callbacks
fastai's training loop is highly extensible, with a rich callback system. See the callback
docs if you're interested in writing your own callback. See below for a list of callbacks that are provided with fastai, grouped by the module they're defined in.
Every callback that is passed to Learner
with the callback_fns
parameter will be automatically stored as an attribute. The attribute name is snake-cased, so for instance ActivationStats
will appear as learn.activation_stats
(assuming your object is named learn
).
LRFinder
¶Use Leslie Smith's learning rate finder to find a good learning rate for training your model. Let's see an example of use on the MNIST dataset with a simple CNN.
path = untar_data(URLs.MNIST_SAMPLE)
data = ImageDataBunch.from_folder(path)
def simple_learner(): return Learner(data, simple_cnn((3,16,16,2)), metrics=[accuracy])
learn = simple_learner()
learn.lr_find()
LR Finder is complete, type {learner_name}.recorder.plot() to see the graph.
learn.recorder.plot()
In this example, a learning rate around 2e-2 seems like the right fit.
lr = 2e-2
OneCycleScheduler
¶Train with Leslie Smith's 1cycle annealing method. Let's train our simple learner using the one cycle policy.
learn.fit_one_cycle(3, lr)
epoch | train_loss | valid_loss | accuracy |
---|---|---|---|
1 | 0.111205 | 0.056460 | 0.979882 |
2 | 0.040632 | 0.023650 | 0.987733 |
3 | 0.021217 | 0.020044 | 0.991659 |
The learning rate and the momentum were changed during the epochs as follows (more info on the dedicated documentation page).
learn.recorder.plot_lr(show_moms=True)
MixUpCallback
¶Data augmentation using the method from mixup: Beyond Empirical Risk Minimization. It is very simple to add mixup in fastai :
learn = Learner(data, simple_cnn((3, 16, 16, 2)), metrics=[accuracy]).mixup()
learn = Learner(data, simple_cnn((3, 16, 16, 2)), metrics=[accuracy, error_rate], callback_fns=[CSVLogger])
learn.fit(3)
epoch | train_loss | valid_loss | accuracy | error_rate |
---|---|---|---|---|
1 | 0.125326 | 0.103473 | 0.963690 | 0.036310 |
2 | 0.077392 | 0.059223 | 0.977920 | 0.022080 |
3 | 0.065756 | 0.081031 | 0.969578 | 0.030422 |
You can then read the csv.
learn.csv_logger.read_logged_file()
epoch | train_loss | valid_loss | accuracy | error_rate | |
---|---|---|---|---|---|
0 | 1 | 0.125326 | 0.103473 | 0.963690 | 0.036310 |
1 | 2 | 0.077392 | 0.059223 | 0.977920 | 0.022080 |
2 | 3 | 0.065756 | 0.081031 | 0.969578 | 0.030422 |
GeneralScheduler
¶Create your own multi-stage annealing schemes with a convenient API. To illustrate, let's implement a 2 phase schedule.
def fit_odd_shedule(learn, lr, mom):
n = len(learn.data.train_dl)
phases = [TrainingPhase(n, lr, mom, lr_anneal=annealing_cos), TrainingPhase(n*2, lr, mom, lr_anneal=annealing_poly(2))]
sched = GeneralScheduler(learn, phases)
learn.callbacks.append(sched)
total_epochs = 3
learn.fit(total_epochs)
learn = Learner(data, simple_cnn((3,16,16,2)), metrics=accuracy)
fit_odd_shedule(learn, 1e-3, 0.9)
epoch | train_loss | valid_loss | accuracy |
---|---|---|---|
1 | 0.178648 | 0.161728 | 0.944553 |
2 | 0.142739 | 0.132620 | 0.957802 |
3 | 0.135239 | 0.129183 | 0.960255 |
learn.recorder.plot_lr()
MixedPrecision
¶Use fp16 to take advantage of tensor cores on recent NVIDIA GPUs for a 200% or more speedup.
HookCallback
¶Convenient wrapper for registering and automatically deregistering PyTorch hooks. Also contains pre-defined hook callback: ActivationStats
.
RNNTrainer
¶Callback taking care of all the tweaks to train an RNN.
TerminateOnNaNCallback
¶Stop training if the loss reaches NaN.
EarlyStoppingCallback
¶Stop training if a given metric/validation loss doesn't improve.
SaveModelCallback
¶Save the model at every epoch, or the best model for a given metric/validation loss.
ReduceLROnPlateauCallback
¶Reduce the learning rate each time a given metric/validation loss doesn't improve by a certain factor.
PeakMemMetric
¶GPU and general RAM profiling callback
train
and basic_train
¶GradientClipping
¶Clips gradient during training.