import glob, os, re, json, pickle
import pandas as pd
from classifier import *
from sklearn.metrics import classification_report
from sklearn.model_selection import train_test_split
pd.set_option('display.max_colwidth', -1)
pd.set_option('display.max_rows', 200)
pd.set_option('display.max_columns', 200)
%reload_ext autoreload
%autoreload 2
df_human = pd.read_json('human_labeled_data.json')
df_human['text'] = df_human['text_data'].str.replace('https[^\s]*\s', '')
df_human['manifestolabel_true'] = df_human['major_label'].str.replace('\d\d\d ','')
# df_human['manifestolabel_true'] = df_human['manifestolabel_true'].replace('ignored','undefined')
df_human = df_human.drop(['text_data','labeled','major_label','selected','taught','labels','users','uncertainty','text_id','predicted_label'],axis=1)
# df_human.to_json('human_labeled_anonymized.json',orient='records')
df_human.sample(n=20)
text | manifestolabel_true | |
---|---|---|
46 | „Die Digitalisierung der Verwaltung schleift einfach. Keine Verwaltung ist wirklich digital, was auch daran liegt, dass es den Verwaltungen freigestellt wird.“ @AnnaVTreuenfels | infrastructure + |
723 | Brütende Rotmilane wegen Windkraft erschossen? - es geht bei Energiewende und Klimaschutz nicht um die Umwelt, sondern um Geld und Macht. Wir brauchen Naturschutz statt linker Ideologie! | environmentalism + |
927 | „Das C in #CDU steht nicht für Christenclub" - @SerapGueler über unsere #Heimat und unsere Partei. „warum falsch mit den Morden in #Hanau umgeht, welche die Fehler der @CDU bei #Migranten gemacht hat und weshalb @ArminLaschet #Kanzler werden sollte“ | multiculturalism + |
93 | Wie ein Post-#Corona-#Konjunkturprogramm den #Klimaschutz mitdenkt: Förderung energetische Gebäudesanierung + klimafreundliches Heizen Senkung #EEG-Umlage #Verkehrswende in Gang setzen Investition in zukunftssichere Industrieanlagen Energiewende europäisch denken | environmentalism + |
280 | Waschmaschinen von Männer für Frauen gemacht. Schon mal im Flusensieb rumgepfriemelt, Männers? | ignored |
341 | Spoiler: Wenn Corona die Menschheit ausrottet ist der #Klimawandel besiegt. Traurig dass ein Virus mehr für den #Klimaschutz tut als die Bundesregierung. | environmentalism + |
31 | Ich mag die vielen Frauen in diesen Führungspositionen. Spiegelt gerecht den Anteil der Frauen in den sozialen Berufen wider. Perfekt. | social justice + |
98 | Wenn du in das Reich Gottes eintreten willst ... Sie müssen zur Gerechtigkeit des Messias zurückkehren ... Und Dies wird erreicht, indem die wahre Errettung Christi Jesus angenommen wird. #HeavenlyFocusedChristian | traditional morality + |
830 | Ich* bin von Natur aus rebellisch. *putzt Holztisch mit Glasreiniger | ignored |
546 | In der #Corona-Pandemie haben ohnehin miserable Arbeitsbedingungen in #Schlachthöfen schwere Konsequenzen. Gesundheit geht vor Profitinteressen. Deshalb besserer #Arbeitsschutz häufigere Kontrolle der Betriebe Arbeitskräfte über Arbeitnehmerrechte informieren | labour + |
499 | Juten Morjen allerseits Neue Woche & viel Arbeit | ignored |
86 | Unser Regierungsrat @MartinNeukom stellt die Weichen für die fossil-freie Beheizung der Gebäude im Kanton Zürich. Mit der Teilrevision des Energiegesetzes will Neukom klar in Richtung null CO2-Emissionen. Ein ganz wichtiger Schritt für den Klimaschutz. http://bit.ly/2zmzR9Q | environmentalism + |
665 | Er hat versucht eine Sache zu sagen aber hat eigentlich was viel besseres damit gesagt | social justice + |
392 | Wer die @mopo stilllegt, schwächt die Demokratie. Wir brauchen Journalisten, die politische Zusammenhänge und Entscheidungen erklären und unabhängig sowie kritisch einordnen. Das ganze Statement: #RettetdieMopo | democracy + |
110 | Wir leben für die Freiheit, wir arbeiten an der Freiheit und wir kämpfen für die Freiheit! Danke @KonstantinKuhle und @johannesvogel für diesen Artikel | freedom/human rights + |
154 | Das liegt doch an uns! So wie Deutschland jetzt aussieht, gehört die CDU/CSU 30 Jahre in die Opposition. Wenn wir die Altparteien erneut wählen, glaubt man da tatsächlich an eine Verbesserung der Politik? Lassen wir doch mal die anderen ran! Jedem seine Chance. ... | political authority + |
602 | Was ist die Position der SPD? Warum hat die SPD den Grünen-Antrag abgelehnt? @EskenSaskia fasst das ganz gut zusammen. | national way of life - |
692 | Gerade jetzt wäre die Stunde für Europa. Ein Europa, das in Anbetracht einer globalen Krise zusammen arbeitet. Ein Europa der Solidarität, gerade mit den Ländern, die die Krise am härtesten trifft. Ein Europa, das niemand zurück lässt. #LeaveNoOneBehind | europe + |
634 | #NieMehrCDU daran ändert sich auch nach wie vor nichts. Ja, sie handhabt die Krise aktuell gut. Aber das erwarte ich von einer Regierung, egal welche Partei diese bildet. Bei nie mehr cdu geht es darum, dass Deutschland die Digitalisierung verschlafen hat. Umweltschutz nicht | infrastructure + |
691 | #Klimaschutz kam 2019 durch CO2-Preis und weniger Kohlekraftwerke ETWAS (zu wenig) voran, Gebäude & Mobilität bleiben Sorgenkinder. 2020 wird vermutlich #Corona die Einhaltung des Pariser Klimaabkommens ermöglichen. Soeben Vorstellung der #Klimabilanz durch @SvenjaSchulze68 @bmu | environmentalism + |
df_human['manifestolabel_true'].value_counts()
ignored 175 environmentalism + 156 political authority + 130 democracy + 112 social justice + 79 freedom/human rights + 49 education + 43 infrastructure + 36 welfare + 34 europe + 19 culture + 17 anti-growth economy + 16 agriculture + 12 free enterprise + 12 national way of life + 11 social harmony + 9 labour + 9 law and order + 7 market regulation + 7 multiculturalism + 7 military + 7 productivity + 7 traditional morality + 6 europe - 5 multiculturalism - 5 national way of life - 5 non economic groups + 4 traditional morality - 4 internationalism + 3 foreign special + 3 nationalization + 3 political corruption - 2 military - 2 controlled economy + 2 education - 2 peace + 2 gov-admin efficiency + 2 incentives + 2 marxist analysis + 1 constitution + 1 economic goals 1 constitution - 1 centralism + 1 Name: manifestolabel_true, dtype: int64
→ How many manifesto training data should be have in our training set to achieve high tweet classification performance?
⇒ Crossvalidation with blending in manifesto data:
mixin_manifesto = []
for N in [0, 100, 500, 1000, 5000, 10000]:
for rep in range(10):
df_manifesto = get_manifesto_data()
tweets_train, tweets_test, labels_train, labels_test = train_test_split(df_human['text'],
df_human['manifestolabel_true'],
test_size=.2)
df_manifesto = df_manifesto.sample(n=N)
train_text = pd.concat([df_manifesto['text'],tweets_train])
train_labels = pd.concat([df_manifesto['manifestolabel'],labels_train])
enough_samples_per_class = train_labels.value_counts() > 5
valid = train_labels.isin(enough_samples_per_class[enough_samples_per_class==True].index)
train_single(train_text[valid], train_labels[valid], 'tweets_and_manifesto')
df_test = pd.concat([tweets_test,labels_test],axis=1)
df_test.columns = ['text','manifestolabel_true']
tw = score_texts(df_test,['tweets_and_manifesto'])
results_tweets_and_manifesto_df = pd.DataFrame(classification_report(tw['manifestolabel_true'],tw['tweets_and_manifesto'],output_dict=True,zero_division=0)).T
print(f'N={N}\n')
print(results_tweets_and_manifesto_df[results_tweets_and_manifesto_df['f1-score']>0])
mixin_manifesto.append(
{
'N': N,
'rep': rep,
'f1':results_tweets_and_manifesto_df.loc['weighted avg','f1-score']
})
mixin_manifesto_df = pd.DataFrame(mixin_manifesto)
Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 2.1s remaining: 2.1s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 2.1s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1] /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=0 precision recall f1-score support culture + 0.750000 0.750000 0.750000 4.000000 democracy + 0.846154 0.846154 0.846154 26.000000 education + 0.636364 0.777778 0.700000 9.000000 environmentalism + 0.846154 0.846154 0.846154 26.000000 europe + 1.000000 1.000000 1.000000 6.000000 ignored 0.760000 0.542857 0.633333 35.000000 infrastructure + 0.500000 0.166667 0.250000 6.000000 political authority + 0.814815 0.687500 0.745763 32.000000 social justice + 0.833333 0.833333 0.833333 12.000000 accuracy 0.551724 0.551724 0.551724 0.551724 macro avg 0.249529 0.230373 0.235883 203.000000 weighted avg 0.612815 0.551724 0.575523 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 0.3s remaining: 0.3s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 0.9s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1] /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=0 precision recall f1-score support democracy + 0.931034 0.843750 0.885246 32.000000 education + 0.750000 1.000000 0.857143 6.000000 environmentalism + 0.818182 0.600000 0.692308 30.000000 europe + 0.666667 0.666667 0.666667 3.000000 freedom/human rights + 0.555556 0.500000 0.526316 10.000000 ignored 0.600000 0.264706 0.367347 34.000000 political authority + 0.589744 0.741935 0.657143 31.000000 social justice + 0.833333 0.909091 0.869565 11.000000 welfare + 1.000000 0.166667 0.285714 6.000000 accuracy 0.497537 0.497537 0.497537 0.497537 macro avg 0.217565 0.183639 0.187337 203.000000 weighted avg 0.592329 0.497537 0.520413 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 0.3s remaining: 0.3s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 0.3s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1] /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=0 precision recall f1-score support democracy + 0.869565 0.869565 0.869565 23.000000 education + 0.750000 0.545455 0.631579 11.000000 environmentalism + 0.875000 0.700000 0.777778 40.000000 ignored 0.608696 0.560000 0.583333 25.000000 infrastructure + 0.666667 0.400000 0.500000 5.000000 political authority + 0.666667 0.952381 0.784314 21.000000 social justice + 1.000000 0.583333 0.736842 12.000000 accuracy 0.477833 0.477833 0.477833 0.477833 macro avg 0.169894 0.144085 0.152607 203.000000 weighted avg 0.531038 0.477833 0.494850 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 0.2s remaining: 0.2s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 0.3s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1] /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=0 precision recall f1-score support culture + 1.000000 0.500000 0.666667 6.00000 democracy + 0.777778 0.736842 0.756757 19.00000 education + 1.000000 0.692308 0.818182 13.00000 environmentalism + 0.805556 0.805556 0.805556 36.00000 europe + 0.500000 0.500000 0.500000 6.00000 freedom/human rights + 0.428571 0.375000 0.400000 8.00000 ignored 0.500000 0.225806 0.311111 31.00000 infrastructure + 1.000000 0.400000 0.571429 5.00000 political authority + 0.586207 0.772727 0.666667 22.00000 social justice + 0.777778 0.500000 0.608696 14.00000 welfare + 1.000000 0.166667 0.285714 6.00000 accuracy 0.467980 0.467980 0.467980 0.46798 macro avg 0.261747 0.177341 0.199712 203.00000 weighted avg 0.588630 0.467980 0.500586 203.00000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 0.2s remaining: 0.2s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 0.3s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1] /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=0 precision recall f1-score support culture + 1.000000 0.500000 0.666667 6.000000 democracy + 0.888889 0.800000 0.842105 20.000000 education + 0.700000 0.777778 0.736842 9.000000 environmentalism + 0.827586 0.750000 0.786885 32.000000 freedom/human rights + 1.000000 0.384615 0.555556 13.000000 ignored 0.600000 0.500000 0.545455 30.000000 political authority + 0.750000 0.782609 0.765957 23.000000 social justice + 0.764706 0.866667 0.812500 15.000000 accuracy 0.497537 0.497537 0.497537 0.497537 macro avg 0.217706 0.178722 0.190399 203.000000 weighted avg 0.572813 0.497537 0.522386 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 0.2s remaining: 0.2s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 0.3s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1] /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=0 precision recall f1-score support culture + 1.000000 0.666667 0.800000 3.000000 democracy + 0.800000 0.666667 0.727273 24.000000 education + 0.444444 0.666667 0.533333 6.000000 environmentalism + 0.694444 0.862069 0.769231 29.000000 europe + 0.400000 0.666667 0.500000 3.000000 freedom/human rights + 0.800000 0.266667 0.400000 15.000000 ignored 0.933333 0.437500 0.595745 32.000000 infrastructure + 0.500000 0.166667 0.250000 6.000000 political authority + 0.534884 0.851852 0.657143 27.000000 social justice + 0.900000 0.500000 0.642857 18.000000 welfare + 1.000000 0.166667 0.285714 12.000000 accuracy 0.502463 0.502463 0.502463 0.502463 macro avg 0.276107 0.204072 0.212458 203.000000 weighted avg 0.658690 0.502463 0.523000 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 0.2s remaining: 0.2s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 0.3s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=0 precision recall f1-score support democracy + 0.875000 0.736842 0.800000 19.000000 education + 0.428571 0.750000 0.545455 4.000000 environmentalism + 0.814815 0.666667 0.733333 33.000000 freedom/human rights + 0.818182 0.900000 0.857143 10.000000 ignored 0.739130 0.459459 0.566667 37.000000 infrastructure + 0.750000 0.375000 0.500000 8.000000 political authority + 0.571429 0.714286 0.634921 28.000000 social justice + 0.722222 0.764706 0.742857 17.000000 welfare + 1.000000 0.250000 0.400000 8.000000 accuracy 0.507389 0.507389 0.507389 0.507389 macro avg 0.191981 0.160485 0.165154 203.000000 weighted avg 0.606087 0.507389 0.535597 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 0.2s remaining: 0.2s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 0.3s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1] /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=0 precision recall f1-score support culture + 1.000000 0.500000 0.666667 2.000000 democracy + 0.826087 0.760000 0.791667 25.000000 education + 0.428571 0.750000 0.545455 4.000000 environmentalism + 0.852941 0.783784 0.816901 37.000000 freedom/human rights + 0.444444 0.666667 0.533333 6.000000 ignored 0.695652 0.470588 0.561404 34.000000 infrastructure + 1.000000 0.600000 0.750000 5.000000 political authority + 0.657143 0.718750 0.686567 32.000000 social justice + 0.666667 0.571429 0.615385 14.000000 welfare + 1.000000 0.375000 0.545455 8.000000 accuracy 0.536946 0.536946 0.536946 0.536946 macro avg 0.252384 0.206541 0.217094 203.000000 weighted avg 0.618749 0.536946 0.564133 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 0.2s remaining: 0.2s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 0.3s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1] /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=0 precision recall f1-score support culture + 1.000000 0.714286 0.833333 7.000000 democracy + 0.952381 0.952381 0.952381 21.000000 education + 0.500000 0.500000 0.500000 10.000000 environmentalism + 0.812500 0.722222 0.764706 36.000000 ignored 0.772727 0.425000 0.548387 40.000000 law and order + 0.333333 1.000000 0.500000 1.000000 political authority + 0.583333 0.777778 0.666667 18.000000 social justice + 0.842105 0.727273 0.780488 22.000000 accuracy 0.512315 0.512315 0.512315 0.512315 macro avg 0.186980 0.187708 0.178902 203.000000 weighted avg 0.598614 0.512315 0.541719 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 0.2s remaining: 0.2s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 0.3s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1] /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=0 precision recall f1-score support culture + 0.833333 1.000000 0.909091 5.000000 democracy + 0.894737 0.809524 0.850000 21.000000 education + 0.750000 1.000000 0.857143 9.000000 environmentalism + 0.714286 0.869565 0.784314 23.000000 europe + 0.428571 1.000000 0.600000 3.000000 freedom/human rights + 0.714286 0.625000 0.666667 8.000000 ignored 0.937500 0.348837 0.508475 43.000000 infrastructure + 0.500000 0.166667 0.250000 6.000000 political authority + 0.540541 0.869565 0.666667 23.000000 social justice + 0.722222 0.812500 0.764706 16.000000 welfare + 0.666667 0.285714 0.400000 7.000000 accuracy 0.541872 0.541872 0.541872 0.541872 macro avg 0.248456 0.251206 0.234099 203.000000 weighted avg 0.616265 0.541872 0.537021 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 0.2s remaining: 0.2s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 0.3s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1] /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=100 precision recall f1-score support agriculture + 0.500000 1.000000 0.666667 2.000000 culture + 1.000000 0.500000 0.666667 2.000000 democracy + 0.800000 0.842105 0.820513 19.000000 environmentalism + 0.904762 0.633333 0.745098 30.000000 europe + 0.555556 0.833333 0.666667 6.000000 freedom/human rights + 0.600000 0.272727 0.375000 11.000000 ignored 0.684211 0.361111 0.472727 36.000000 infrastructure + 0.600000 0.333333 0.428571 9.000000 political authority + 0.617647 0.700000 0.656250 30.000000 social justice + 0.750000 0.562500 0.642857 16.000000 accuracy 0.453202 0.453202 0.453202 0.453202 macro avg 0.241799 0.208222 0.211759 203.000000 weighted avg 0.570627 0.453202 0.490556 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 0.3s remaining: 0.3s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 0.3s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1] /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=100 precision recall f1-score support democracy + 0.933333 0.608696 0.736842 23.000000 education + 0.333333 0.428571 0.375000 7.000000 environmentalism + 0.896552 0.666667 0.764706 39.000000 freedom/human rights + 0.500000 0.285714 0.363636 7.000000 ignored 0.705882 0.387097 0.500000 31.000000 law and order + 1.000000 1.000000 1.000000 1.000000 political authority + 0.583333 0.807692 0.677419 26.000000 social justice + 0.785714 0.523810 0.628571 21.000000 welfare + 1.000000 0.250000 0.400000 8.000000 accuracy 0.453202 0.453202 0.453202 0.453202 macro avg 0.232350 0.170974 0.187799 203.000000 weighted avg 0.614850 0.453202 0.504701 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 0.2s remaining: 0.2s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 0.3s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1] /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=100 precision recall f1-score support culture + 1.000000 0.285714 0.444444 7.000000 democracy + 0.666667 0.777778 0.717949 18.000000 education + 0.750000 0.900000 0.818182 10.000000 environmentalism + 0.736842 0.777778 0.756757 18.000000 europe + 0.800000 0.800000 0.800000 5.000000 freedom/human rights + 0.800000 0.444444 0.571429 9.000000 ignored 0.666667 0.352941 0.461538 34.000000 infrastructure + 0.666667 0.285714 0.400000 7.000000 political authority + 0.583333 0.840000 0.688525 25.000000 social justice + 0.750000 0.600000 0.666667 15.000000 accuracy 0.448276 0.448276 0.448276 0.448276 macro avg 0.218240 0.178364 0.186044 203.000000 weighted avg 0.512955 0.448276 0.456581 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 0.3s remaining: 0.3s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 0.3s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1] /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=100 precision recall f1-score support agriculture + 1.000000 1.000000 1.000000 1.00000 culture + 1.000000 0.666667 0.800000 3.00000 democracy + 0.842105 0.842105 0.842105 19.00000 education + 0.555556 0.555556 0.555556 9.00000 environmentalism + 0.848485 0.800000 0.823529 35.00000 europe + 0.666667 1.000000 0.800000 4.00000 freedom/human rights + 0.500000 0.555556 0.526316 9.00000 ignored 0.750000 0.357143 0.483871 42.00000 political authority + 0.750000 0.777778 0.763636 27.00000 social justice + 0.846154 0.687500 0.758621 16.00000 accuracy 0.532020 0.532020 0.532020 0.53202 macro avg 0.277106 0.258654 0.262630 203.00000 weighted avg 0.626365 0.532020 0.562754 203.00000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 0.2s remaining: 0.2s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 0.3s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1] /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=100 precision recall f1-score support culture + 1.000000 1.000000 1.000000 4.000000 democracy + 0.884615 0.793103 0.836364 29.000000 education + 0.583333 0.700000 0.636364 10.000000 environmentalism + 0.787879 0.787879 0.787879 33.000000 europe + 0.666667 1.000000 0.800000 2.000000 freedom/human rights + 0.333333 0.142857 0.200000 7.000000 ignored 0.736842 0.318182 0.444444 44.000000 political authority + 0.650000 0.590909 0.619048 22.000000 social justice + 0.916667 0.647059 0.758621 17.000000 accuracy 0.497537 0.497537 0.497537 0.497537 macro avg 0.234262 0.213571 0.217240 203.000000 weighted avg 0.627873 0.497537 0.540342 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 0.2s remaining: 0.2s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 0.3s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1] /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=100 precision recall f1-score support culture + 1.000000 0.400000 0.571429 5.000000 democracy + 0.840000 0.777778 0.807692 27.000000 education + 0.800000 0.800000 0.800000 10.000000 environmentalism + 0.866667 0.722222 0.787879 36.000000 freedom/human rights + 0.833333 0.333333 0.476190 15.000000 ignored 0.933333 0.518519 0.666667 27.000000 political authority + 0.680000 0.680000 0.680000 25.000000 social justice + 0.818182 0.500000 0.620690 18.000000 accuracy 0.502463 0.502463 0.502463 0.502463 macro avg 0.241840 0.168995 0.193234 203.000000 weighted avg 0.671464 0.502463 0.563270 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 0.2s remaining: 0.2s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 0.3s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1] /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=100 precision recall f1-score support democracy + 1.000000 0.772727 0.871795 22.000000 education + 0.400000 1.000000 0.571429 4.000000 environmentalism + 0.648649 0.800000 0.716418 30.000000 europe + 0.600000 0.600000 0.600000 5.000000 freedom/human rights + 0.600000 0.375000 0.461538 8.000000 ignored 0.722222 0.371429 0.490566 35.000000 infrastructure + 1.000000 0.111111 0.200000 9.000000 law and order + 1.000000 0.500000 0.666667 2.000000 political authority + 0.631579 0.800000 0.705882 30.000000 social justice + 0.666667 0.315789 0.428571 19.000000 accuracy 0.472906 0.472906 0.472906 0.472906 macro avg 0.242304 0.188202 0.190429 203.000000 weighted avg 0.584982 0.472906 0.489027 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 0.3s remaining: 0.3s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 0.3s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1]
N=100 precision recall f1-score support culture + 1.000000 1.000000 1.000000 1.000000 democracy + 0.894737 0.739130 0.809524 23.000000 education + 0.555556 0.714286 0.625000 7.000000 environmentalism + 0.750000 0.750000 0.750000 24.000000 europe + 1.000000 0.200000 0.333333 5.000000 freedom/human rights + 0.428571 0.250000 0.315789 12.000000 ignored 0.833333 0.348837 0.491803 43.000000 infrastructure + 1.000000 0.285714 0.444444 7.000000 political authority + 0.575000 0.741935 0.647887 31.000000 social justice + 0.625000 0.625000 0.625000 8.000000 welfare + 0.500000 0.142857 0.222222 7.000000 accuracy 0.448276 0.448276 0.448276 0.448276 macro avg 0.291507 0.207063 0.223750 203.000000 weighted avg 0.604774 0.448276 0.484477 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 0.2s remaining: 0.2s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 0.3s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1] /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=100 precision recall f1-score support culture + 0.750000 1.000000 0.857143 3.000000 democracy + 0.941176 0.695652 0.800000 23.000000 education + 0.833333 1.000000 0.909091 5.000000 environmentalism + 0.843750 0.818182 0.830769 33.000000 ignored 0.900000 0.391304 0.545455 46.000000 political authority + 0.541667 0.520000 0.530612 25.000000 social justice + 0.600000 0.500000 0.545455 12.000000 accuracy 0.433498 0.433498 0.433498 0.433498 macro avg 0.200368 0.182413 0.185871 203.000000 weighted avg 0.581523 0.433498 0.481941 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 0.3s remaining: 0.3s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 0.3s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1] /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=100 precision recall f1-score support culture + 0.500000 0.333333 0.400000 3.000000 democracy + 0.894737 0.653846 0.755556 26.000000 education + 0.857143 0.750000 0.800000 8.000000 environmentalism + 0.823529 0.823529 0.823529 34.000000 europe + 1.000000 1.000000 1.000000 2.000000 freedom/human rights + 0.666667 0.545455 0.600000 11.000000 ignored 0.900000 0.500000 0.642857 36.000000 infrastructure + 0.500000 0.285714 0.363636 7.000000 political authority + 0.593750 0.826087 0.690909 23.000000 social justice + 0.923077 0.666667 0.774194 18.000000 accuracy 0.546798 0.546798 0.546798 0.546798 macro avg 0.255297 0.212821 0.228356 203.000000 weighted avg 0.665642 0.546798 0.587976 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 0.4s remaining: 0.4s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 0.6s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1] /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) [Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
N=500 precision recall f1-score support culture + 0.250000 1.000000 0.400000 2.000000 democracy + 0.900000 0.500000 0.642857 18.000000 education + 0.666667 0.800000 0.727273 10.000000 environmentalism + 0.695652 0.516129 0.592593 31.000000 freedom/human rights + 0.625000 0.833333 0.714286 6.000000 ignored 0.769231 0.270270 0.400000 37.000000 infrastructure + 0.500000 0.200000 0.285714 5.000000 political authority + 0.518519 0.608696 0.560000 23.000000 social justice + 0.857143 0.300000 0.444444 20.000000 accuracy 0.349754 0.349754 0.349754 0.349754 macro avg 0.180694 0.157138 0.148974 203.000000 weighted avg 0.535528 0.349754 0.395555 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 0.4s remaining: 0.4s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 0.6s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1]
N=500 precision recall f1-score support agriculture + 1.000000 0.500000 0.666667 2.000000 culture + 0.666667 0.666667 0.666667 6.000000 democracy + 0.937500 0.652174 0.769231 23.000000 education + 0.777778 0.500000 0.608696 14.000000 environmentalism + 0.821429 0.718750 0.766667 32.000000 freedom/human rights + 0.750000 0.300000 0.428571 10.000000 ignored 1.000000 0.259259 0.411765 27.000000 infrastructure + 1.000000 0.500000 0.666667 6.000000 law and order + 1.000000 1.000000 1.000000 1.000000 political authority + 0.600000 0.692308 0.642857 26.000000 social justice + 0.769231 0.454545 0.571429 22.000000 welfare + 1.000000 0.142857 0.250000 7.000000 accuracy 0.458128 0.458128 0.458128 0.458128 macro avg 0.355952 0.220226 0.256869 203.000000 weighted avg 0.718030 0.458128 0.529654 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 0.4s remaining: 0.4s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 0.6s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1]
N=500 precision recall f1-score support culture + 1.000000 0.500000 0.666667 4.000000 democracy + 0.833333 0.800000 0.816327 25.000000 education + 0.666667 0.750000 0.705882 8.000000 environmentalism + 0.806452 0.806452 0.806452 31.000000 europe + 0.666667 0.666667 0.666667 6.000000 freedom/human rights + 0.666667 0.444444 0.533333 9.000000 ignored 0.800000 0.222222 0.347826 36.000000 infrastructure + 0.714286 0.555556 0.625000 9.000000 political authority + 0.666667 0.620690 0.642857 29.000000 social justice + 0.900000 0.600000 0.720000 15.000000 accuracy 0.497537 0.497537 0.497537 0.497537 macro avg 0.275741 0.213073 0.233250 203.000000 weighted avg 0.656298 0.497537 0.542421 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 0.4s remaining: 0.4s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 0.5s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1] /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=500 precision recall f1-score support culture + 1.000000 0.750000 0.857143 4.000000 democracy + 0.937500 0.714286 0.810811 21.000000 education + 0.444444 0.571429 0.500000 7.000000 environmentalism + 0.857143 0.731707 0.789474 41.000000 europe + 0.500000 1.000000 0.666667 2.000000 freedom/human rights + 0.545455 0.600000 0.571429 10.000000 ignored 0.833333 0.312500 0.454545 32.000000 infrastructure + 1.000000 0.333333 0.500000 12.000000 military + 1.000000 1.000000 1.000000 1.000000 political authority + 0.478261 0.578947 0.523810 19.000000 social justice + 0.846154 0.578947 0.687500 19.000000 welfare + 1.000000 0.142857 0.250000 7.000000 accuracy 0.482759 0.482759 0.482759 0.482759 macro avg 0.314743 0.243800 0.253713 203.000000 weighted avg 0.690771 0.482759 0.540305 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 0.4s remaining: 0.4s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 0.5s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1] /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=500 precision recall f1-score support culture + 1.000000 0.833333 0.909091 6.00000 democracy + 0.782609 0.782609 0.782609 23.00000 education + 0.714286 1.000000 0.833333 5.00000 environmentalism + 0.760000 0.612903 0.678571 31.00000 europe + 0.800000 0.666667 0.727273 6.00000 freedom/human rights + 1.000000 0.400000 0.571429 10.00000 ignored 0.733333 0.314286 0.440000 35.00000 infrastructure + 0.833333 0.625000 0.714286 8.00000 political authority + 0.545455 0.571429 0.558140 21.00000 social justice + 0.777778 0.437500 0.560000 16.00000 accuracy 0.443350 0.443350 0.443350 0.44335 macro avg 0.294326 0.231249 0.250916 203.00000 weighted avg 0.601792 0.443350 0.495222 203.00000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 0.3s remaining: 0.3s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 0.5s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1]
N=500 precision recall f1-score support culture + 0.750000 1.000000 0.857143 3.000000 democracy + 0.857143 0.545455 0.666667 22.000000 education + 0.615385 0.888889 0.727273 9.000000 environmentalism + 0.888889 0.600000 0.716418 40.000000 europe + 0.666667 1.000000 0.800000 2.000000 freedom/human rights + 0.600000 0.333333 0.428571 9.000000 ignored 0.720000 0.545455 0.620690 33.000000 infrastructure + 0.750000 0.333333 0.461538 9.000000 political authority + 0.633333 0.633333 0.633333 30.000000 social justice + 0.727273 0.533333 0.615385 15.000000 welfare + 0.666667 0.500000 0.571429 4.000000 accuracy 0.502463 0.502463 0.502463 0.502463 macro avg 0.262512 0.230438 0.236615 203.000000 weighted avg 0.650346 0.502463 0.556899 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 0.4s remaining: 0.4s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 0.5s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1]
N=500 precision recall f1-score support culture + 0.500000 0.500000 0.500000 2.000000 democracy + 0.909091 0.476190 0.625000 21.000000 education + 0.600000 0.857143 0.705882 7.000000 environmentalism + 0.760000 0.760000 0.760000 25.000000 europe + 0.750000 0.500000 0.600000 6.000000 freedom/human rights + 0.125000 0.166667 0.142857 6.000000 ignored 0.909091 0.250000 0.392157 40.000000 infrastructure + 0.666667 0.285714 0.400000 7.000000 political authority + 0.740741 0.689655 0.714286 29.000000 social justice + 0.733333 0.647059 0.687500 17.000000 welfare + 1.000000 0.333333 0.500000 9.000000 accuracy 0.423645 0.423645 0.423645 0.423645 macro avg 0.248191 0.176315 0.194441 203.000000 weighted avg 0.652805 0.423645 0.482322 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 0.4s remaining: 0.4s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 0.5s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1] /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=500 precision recall f1-score support agriculture + 1.000000 0.250000 0.400000 4.000000 culture + 1.000000 0.800000 0.888889 5.000000 democracy + 0.625000 0.909091 0.740741 11.000000 education + 0.500000 0.555556 0.526316 9.000000 environmentalism + 0.700000 0.700000 0.700000 30.000000 freedom/human rights + 0.714286 0.555556 0.625000 9.000000 ignored 0.900000 0.257143 0.400000 35.000000 market regulation + 0.500000 1.000000 0.666667 1.000000 political authority + 0.800000 0.645161 0.714286 31.000000 social justice + 0.928571 0.650000 0.764706 20.000000 accuracy 0.438424 0.438424 0.438424 0.438424 macro avg 0.255595 0.210750 0.214220 203.000000 weighted avg 0.606773 0.438424 0.481074 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 0.3s remaining: 0.3s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 0.5s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1] /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=500 precision recall f1-score support culture + 1.000000 1.000000 1.000000 2.000000 democracy + 0.933333 0.608696 0.736842 23.000000 education + 0.777778 0.583333 0.666667 12.000000 environmentalism + 0.714286 0.689655 0.701754 29.000000 europe + 0.666667 0.666667 0.666667 3.000000 freedom/human rights + 0.500000 0.600000 0.545455 10.000000 ignored 0.666667 0.242424 0.355556 33.000000 political authority + 0.538462 0.736842 0.622222 19.000000 social justice + 0.769231 0.555556 0.645161 18.000000 welfare + 0.500000 0.111111 0.181818 9.000000 accuracy 0.413793 0.413793 0.413793 0.413793 macro avg 0.207836 0.170420 0.180063 203.000000 weighted avg 0.547247 0.413793 0.451023 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 0.4s remaining: 0.4s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 0.5s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1] /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=500 precision recall f1-score support culture + 1.000000 0.500000 0.666667 2.000000 democracy + 0.900000 0.782609 0.837209 23.000000 education + 0.500000 0.250000 0.333333 12.000000 environmentalism + 0.774194 0.705882 0.738462 34.000000 europe + 0.750000 0.750000 0.750000 4.000000 freedom/human rights + 1.000000 0.454545 0.625000 11.000000 ignored 0.611111 0.379310 0.468085 29.000000 infrastructure + 1.000000 0.571429 0.727273 7.000000 political authority + 0.608696 0.538462 0.571429 26.000000 social justice + 0.666667 0.444444 0.533333 18.000000 accuracy 0.448276 0.448276 0.448276 0.448276 macro avg 0.251957 0.173441 0.201638 203.000000 weighted avg 0.598871 0.448276 0.505884 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 0.4s remaining: 0.4s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 0.6s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1]
N=1000 precision recall f1-score support culture + 1.000000 1.000000 1.000000 2.00000 democracy + 1.000000 0.727273 0.842105 22.00000 education + 0.500000 0.300000 0.375000 10.00000 environmentalism + 0.714286 0.483871 0.576923 31.00000 europe + 0.500000 0.666667 0.571429 3.00000 freedom/human rights + 1.000000 0.250000 0.400000 8.00000 ignored 1.000000 0.250000 0.400000 32.00000 infrastructure + 1.000000 0.285714 0.444444 7.00000 political authority + 0.666667 0.666667 0.666667 21.00000 social justice + 1.000000 0.421053 0.592593 19.00000 accuracy 0.354680 0.354680 0.354680 0.35468 macro avg 0.246499 0.148566 0.172622 203.00000 weighted avg 0.653413 0.354680 0.434707 203.00000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 0.5s remaining: 0.5s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 0.7s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1]
N=1000 precision recall f1-score support agriculture + 0.500000 0.500000 0.500000 2.000000 culture + 1.000000 0.333333 0.500000 3.000000 democracy + 0.954545 0.807692 0.875000 26.000000 education + 0.636364 0.777778 0.700000 9.000000 environmentalism + 0.913043 0.617647 0.736842 34.000000 europe + 0.666667 1.000000 0.800000 2.000000 freedom/human rights + 0.888889 0.571429 0.695652 14.000000 ignored 1.000000 0.272727 0.428571 33.000000 infrastructure + 1.000000 0.250000 0.400000 8.000000 military + 1.000000 1.000000 1.000000 1.000000 political authority + 0.750000 0.461538 0.571429 26.000000 social justice + 0.857143 0.461538 0.600000 13.000000 accuracy 0.448276 0.448276 0.448276 0.448276 macro avg 0.327956 0.227538 0.251855 203.000000 weighted avg 0.748816 0.448276 0.536659 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 0.5s remaining: 0.5s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 0.7s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1] /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=1000 precision recall f1-score support culture + 1.000000 0.333333 0.500000 3.000000 democracy + 0.750000 0.714286 0.731707 21.000000 education + 0.555556 0.555556 0.555556 9.000000 environmentalism + 0.809524 0.566667 0.666667 30.000000 europe + 1.000000 0.500000 0.666667 2.000000 freedom/human rights + 0.800000 0.400000 0.533333 10.000000 ignored 1.000000 0.209302 0.346154 43.000000 political authority + 0.600000 0.461538 0.521739 26.000000 social justice + 0.714286 0.454545 0.555556 11.000000 accuracy 0.339901 0.339901 0.339901 0.339901 macro avg 0.225918 0.131101 0.158668 203.000000 weighted avg 0.613265 0.339901 0.409327 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 0.5s remaining: 0.5s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 0.6s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1] /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=1000 precision recall f1-score support culture + 1.000000 0.333333 0.500000 3.000000 democracy + 0.857143 0.631579 0.727273 19.000000 education + 0.857143 0.666667 0.750000 9.000000 environmentalism + 0.846154 0.611111 0.709677 36.000000 europe + 0.666667 0.800000 0.727273 5.000000 freedom/human rights + 0.571429 0.333333 0.421053 12.000000 ignored 0.750000 0.162162 0.266667 37.000000 infrastructure + 1.000000 0.333333 0.500000 6.000000 military + 1.000000 1.000000 1.000000 1.000000 political authority + 0.681818 0.681818 0.681818 22.000000 social justice + 0.777778 0.388889 0.518519 18.000000 accuracy 0.394089 0.394089 0.394089 0.394089 macro avg 0.300271 0.198074 0.226743 203.000000 weighted avg 0.647301 0.394089 0.465545 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 0.5s remaining: 0.5s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 0.6s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1]
N=1000 precision recall f1-score support culture + 1.000000 1.000000 1.000000 3.000000 democracy + 1.000000 0.666667 0.800000 18.000000 education + 0.500000 0.800000 0.615385 10.000000 environmentalism + 0.800000 0.571429 0.666667 35.000000 europe + 0.750000 0.750000 0.750000 4.000000 freedom/human rights + 0.500000 0.333333 0.400000 6.000000 ignored 0.750000 0.243243 0.367347 37.000000 infrastructure + 0.500000 0.200000 0.285714 5.000000 political authority + 0.611111 0.523810 0.564103 21.000000 social justice + 0.750000 0.461538 0.571429 13.000000 accuracy 0.369458 0.369458 0.369458 0.369458 macro avg 0.217003 0.168182 0.182444 203.000000 weighted avg 0.555829 0.369458 0.426514 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 0.5s remaining: 0.5s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 0.6s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1]
N=1000 precision recall f1-score support culture + 1.000000 0.500000 0.666667 2.000000 democracy + 0.869565 0.714286 0.784314 28.000000 education + 0.750000 0.500000 0.600000 6.000000 environmentalism + 0.900000 0.545455 0.679245 33.000000 freedom/human rights + 0.500000 0.428571 0.461538 7.000000 ignored 0.909091 0.222222 0.357143 45.000000 political authority + 0.687500 0.550000 0.611111 20.000000 social justice + 0.666667 0.285714 0.400000 14.000000 accuracy 0.344828 0.344828 0.344828 0.344828 macro avg 0.209427 0.124875 0.152001 203.000000 weighted avg 0.630740 0.344828 0.425781 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 0.5s remaining: 0.5s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 0.6s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1]
N=1000 precision recall f1-score support culture + 1.000000 0.750000 0.857143 4.000000 democracy + 0.941176 0.842105 0.888889 19.000000 education + 0.250000 0.111111 0.153846 9.000000 environmentalism + 0.812500 0.433333 0.565217 30.000000 europe + 0.833333 0.833333 0.833333 6.000000 freedom/human rights + 1.000000 0.333333 0.500000 6.000000 ignored 0.666667 0.250000 0.363636 40.000000 infrastructure + 0.800000 0.500000 0.615385 8.000000 political authority + 0.666667 0.518519 0.583333 27.000000 social justice + 0.909091 0.588235 0.714286 17.000000 accuracy 0.384236 0.384236 0.384236 0.384236 macro avg 0.254175 0.166451 0.195970 203.000000 weighted avg 0.620830 0.384236 0.463153 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 0.5s remaining: 0.5s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 0.7s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=1000 precision recall f1-score support culture + 0.750000 1.000000 0.857143 3.000000 democracy + 0.947368 0.857143 0.900000 21.000000 education + 0.666667 0.500000 0.571429 12.000000 environmentalism + 0.774194 0.666667 0.716418 36.000000 europe + 0.750000 0.600000 0.666667 5.000000 freedom/human rights + 0.727273 0.666667 0.695652 12.000000 ignored 0.857143 0.193548 0.315789 31.000000 infrastructure + 0.500000 0.142857 0.222222 7.000000 political authority + 0.750000 0.480000 0.585366 25.000000 social justice + 0.785714 0.647059 0.709677 17.000000 welfare + 1.000000 0.125000 0.222222 8.000000 accuracy 0.458128 0.458128 0.458128 0.458128 macro avg 0.265886 0.183717 0.201956 203.000000 weighted avg 0.692963 0.458128 0.520307 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 0.5s remaining: 0.5s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 0.7s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1] /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=1000 precision recall f1-score support culture + 1.000000 0.500000 0.666667 4.000000 democracy + 0.866667 0.565217 0.684211 23.000000 education + 0.833333 0.714286 0.769231 7.000000 environmentalism + 0.772727 0.653846 0.708333 26.000000 europe + 0.800000 0.800000 0.800000 5.000000 ignored 0.888889 0.275862 0.421053 29.000000 infrastructure + 0.600000 0.300000 0.400000 10.000000 political authority + 0.576923 0.517241 0.545455 29.000000 social justice + 0.750000 0.428571 0.545455 14.000000 accuracy 0.359606 0.359606 0.359606 0.359606 macro avg 0.244432 0.163966 0.191048 203.000000 weighted avg 0.555991 0.359606 0.423004 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 0.6s remaining: 0.6s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 0.8s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1] /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=1000 precision recall f1-score support agriculture + 0.333333 0.500000 0.400000 2.000000 culture + 1.000000 0.750000 0.857143 4.000000 democracy + 0.882353 0.714286 0.789474 21.000000 education + 0.714286 0.555556 0.625000 9.000000 environmentalism + 0.777778 0.840000 0.807692 25.000000 europe + 0.750000 0.750000 0.750000 4.000000 freedom/human rights + 0.666667 0.400000 0.500000 10.000000 ignored 0.750000 0.166667 0.272727 36.000000 infrastructure + 1.000000 0.125000 0.222222 8.000000 political authority + 0.760000 0.655172 0.703704 29.000000 social justice + 0.909091 0.588235 0.714286 17.000000 accuracy 0.433498 0.433498 0.433498 0.433498 macro avg 0.275597 0.194997 0.214266 203.000000 weighted avg 0.646455 0.433498 0.486557 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 2.1s remaining: 2.1s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 3.2s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=5000 precision recall f1-score support democracy + 0.777778 0.350000 0.482759 20.000000 environmentalism + 0.545455 0.176471 0.266667 34.000000 europe + 1.000000 0.600000 0.750000 5.000000 infrastructure + 1.000000 0.200000 0.333333 5.000000 military + 1.000000 1.000000 1.000000 1.000000 political authority + 0.636364 0.280000 0.388889 25.000000 social justice + 1.000000 0.333333 0.500000 15.000000 accuracy 0.147783 0.147783 0.147783 0.147783 macro avg 0.175282 0.086465 0.109460 203.000000 weighted avg 0.374434 0.147783 0.208674 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 3.5s remaining: 3.5s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 4.6s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1] /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=5000 precision recall f1-score support culture + 1.000000 0.250000 0.400000 4.000000 democracy + 1.000000 0.380952 0.551724 21.000000 education + 1.000000 0.125000 0.222222 8.000000 environmentalism + 0.600000 0.171429 0.266667 35.000000 infrastructure + 0.500000 0.142857 0.222222 7.000000 political authority + 0.777778 0.269231 0.400000 26.000000 social justice + 1.000000 0.380952 0.551724 21.000000 accuracy 0.157635 0.157635 0.157635 0.157635 macro avg 0.209921 0.061444 0.093377 203.000000 weighted avg 0.486316 0.157635 0.235660 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 1.9s remaining: 1.9s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 2.5s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1] /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=5000 precision recall f1-score support culture + 0.666667 0.400000 0.500000 5.000000 democracy + 1.000000 0.444444 0.615385 18.000000 environmentalism + 0.900000 0.281250 0.428571 32.000000 europe + 0.333333 1.000000 0.500000 1.000000 freedom/human rights + 0.714286 0.357143 0.476190 14.000000 ignored 1.000000 0.071429 0.133333 28.000000 political authority + 0.375000 0.142857 0.206897 21.000000 social justice + 1.000000 0.277778 0.434783 18.000000 accuracy 0.172414 0.172414 0.172414 0.172414 macro avg 0.181494 0.090149 0.099853 203.000000 weighted avg 0.563259 0.172414 0.248089 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 1.3s remaining: 1.3s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 1.9s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1] /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=5000 precision recall f1-score support democracy + 1.000000 0.538462 0.700000 26.000000 education + 0.625000 0.416667 0.500000 12.000000 environmentalism + 0.666667 0.270270 0.384615 37.000000 europe + 0.500000 0.200000 0.285714 5.000000 freedom/human rights + 1.000000 0.125000 0.222222 8.000000 political authority + 0.833333 0.217391 0.344828 23.000000 social justice + 1.000000 0.071429 0.133333 14.000000 accuracy 0.182266 0.182266 0.182266 0.182266 macro avg 0.187500 0.061307 0.085690 203.000000 weighted avg 0.501642 0.182266 0.253373 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 1.3s remaining: 1.3s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 1.8s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1] /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=5000 precision recall f1-score support culture + 0.500000 0.333333 0.400000 3.00000 democracy + 0.894737 0.708333 0.790698 24.00000 environmentalism + 0.818182 0.281250 0.418605 32.00000 europe + 0.500000 0.200000 0.285714 5.00000 freedom/human rights + 1.000000 0.125000 0.222222 8.00000 labour + 1.000000 1.000000 1.000000 1.00000 military + 1.000000 0.333333 0.500000 3.00000 political authority + 0.600000 0.136364 0.222222 22.00000 social justice + 1.000000 0.111111 0.200000 18.00000 accuracy 0.177340 0.177340 0.177340 0.17734 macro avg 0.215086 0.094962 0.118808 203.00000 weighted avg 0.467268 0.177340 0.235307 203.00000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 1.6s remaining: 1.6s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 2.3s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=5000 precision recall f1-score support culture + 1.000000 0.250000 0.400000 4.000000 democracy + 0.785714 0.423077 0.550000 26.000000 environmentalism + 1.000000 0.200000 0.333333 35.000000 europe + 1.000000 0.500000 0.666667 2.000000 ignored 1.000000 0.030303 0.058824 33.000000 political authority + 0.500000 0.107143 0.176471 28.000000 social justice + 0.666667 0.095238 0.166667 21.000000 accuracy 0.128079 0.128079 0.128079 0.128079 macro avg 0.212585 0.057349 0.083999 203.000000 weighted avg 0.603096 0.128079 0.193509 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 1.6s remaining: 1.6s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 2.4s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1] /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=5000 precision recall f1-score support culture + 1.000000 0.333333 0.500000 3.000000 democracy + 1.000000 0.368421 0.538462 19.000000 education + 0.666667 0.285714 0.400000 7.000000 environmentalism + 0.777778 0.259259 0.388889 27.000000 europe + 0.500000 0.666667 0.571429 3.000000 freedom/human rights + 0.666667 0.250000 0.363636 8.000000 infrastructure + 0.666667 0.285714 0.400000 7.000000 law and order + 1.000000 0.500000 0.666667 2.000000 political authority + 0.700000 0.205882 0.318182 34.000000 social justice + 1.000000 0.153846 0.266667 13.000000 accuracy 0.162562 0.162562 0.162562 0.162562 macro avg 0.249306 0.103401 0.137935 203.000000 weighted avg 0.482594 0.162562 0.236809 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 2.1s remaining: 2.1s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 2.7s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=5000 precision recall f1-score support culture + 1.000000 1.000000 1.000000 2.000000 democracy + 0.857143 0.521739 0.648649 23.000000 education + 0.166667 0.142857 0.153846 7.000000 environmentalism + 0.571429 0.307692 0.400000 26.000000 europe + 0.500000 0.200000 0.285714 5.000000 infrastructure + 0.666667 0.200000 0.307692 10.000000 political authority + 0.714286 0.192308 0.303030 26.000000 social justice + 1.000000 0.200000 0.333333 20.000000 accuracy 0.172414 0.172414 0.172414 0.172414 macro avg 0.176651 0.089181 0.110718 203.000000 weighted avg 0.421065 0.172414 0.233728 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 1.9s remaining: 1.9s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 2.7s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1] /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=5000 precision recall f1-score support culture + 1.000000 0.200000 0.333333 5.000000 democracy + 0.846154 0.478261 0.611111 23.000000 environmentalism + 0.900000 0.272727 0.418605 33.000000 europe + 0.500000 0.200000 0.285714 5.000000 freedom/human rights + 0.500000 0.153846 0.235294 13.000000 political authority + 0.600000 0.111111 0.187500 27.000000 social justice + 1.000000 0.166667 0.285714 18.000000 accuracy 0.147783 0.147783 0.147783 0.147783 macro avg 0.178205 0.052754 0.078576 203.000000 weighted avg 0.479613 0.147783 0.217876 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 1.5s remaining: 1.5s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 2.2s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=5000 precision recall f1-score support democracy + 1.000000 0.428571 0.600000 21.000000 environmentalism + 0.875000 0.280000 0.424242 25.000000 freedom/human rights + 0.666667 0.307692 0.421053 13.000000 political authority + 0.600000 0.120000 0.200000 25.000000 social justice + 0.666667 0.333333 0.444444 12.000000 accuracy 0.133005 0.133005 0.133005 0.133005 macro avg 0.122849 0.047406 0.067411 203.000000 weighted avg 0.367200 0.133005 0.192183 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 3.4s remaining: 3.4s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 4.6s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1] /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=10000 precision recall f1-score support agriculture + 1.000000 0.250000 0.400000 4.000000 democracy + 0.857143 0.315789 0.461538 19.000000 education + 0.666667 0.222222 0.333333 9.000000 environmentalism + 0.833333 0.142857 0.243902 35.000000 political authority + 1.000000 0.166667 0.285714 18.000000 social justice + 0.666667 0.105263 0.181818 19.000000 accuracy 0.093596 0.093596 0.093596 0.093596 macro avg 0.167460 0.040093 0.063544 203.000000 weighted avg 0.424232 0.093596 0.150262 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 2.9s remaining: 2.9s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 4.0s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=10000 precision recall f1-score support culture + 1.000000 0.333333 0.500000 3.000000 democracy + 1.000000 0.136364 0.240000 22.000000 education + 1.000000 0.066667 0.125000 15.000000 environmentalism + 1.000000 0.103448 0.187500 29.000000 europe + 0.500000 0.166667 0.250000 6.000000 political authority + 0.333333 0.050000 0.086957 20.000000 social justice + 1.000000 0.071429 0.133333 14.000000 accuracy 0.054187 0.054187 0.054187 0.054187 macro avg 0.194444 0.030930 0.050760 203.000000 weighted avg 0.456486 0.054187 0.094573 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 2.5s remaining: 2.5s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 3.5s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=10000 precision recall f1-score support democracy + 1.000000 0.318182 0.482759 22.000000 education + 1.000000 0.090909 0.166667 11.000000 freedom/human rights + 0.666667 0.222222 0.333333 9.000000 political authority + 1.000000 0.066667 0.125000 30.000000 social justice + 1.000000 0.083333 0.153846 12.000000 accuracy 0.064039 0.064039 0.064039 0.064039 macro avg 0.155556 0.026044 0.042053 203.000000 weighted avg 0.399015 0.064039 0.103695 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 2.7s remaining: 2.7s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 3.8s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1] /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=10000 precision recall f1-score support culture + 1.000000 0.166667 0.285714 6.000000 democracy + 0.888889 0.421053 0.571429 19.000000 education + 0.500000 0.100000 0.166667 10.000000 environmentalism + 0.600000 0.115385 0.193548 26.000000 freedom/human rights + 0.500000 0.166667 0.250000 12.000000 infrastructure + 1.000000 0.100000 0.181818 10.000000 law and order + 1.000000 0.333333 0.500000 3.000000 political authority + 0.833333 0.217391 0.344828 23.000000 social justice + 1.000000 0.105263 0.190476 19.000000 accuracy 0.118227 0.118227 0.118227 0.118227 macro avg 0.228819 0.053930 0.083890 203.000000 weighted avg 0.495840 0.118227 0.182949 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 2.4s remaining: 2.4s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 3.3s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1] /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=10000 precision recall f1-score support culture + 1.000000 0.500000 0.666667 2.000000 democracy + 1.000000 0.315789 0.480000 19.000000 education + 0.500000 0.166667 0.250000 6.000000 environmentalism + 0.500000 0.024390 0.046512 41.000000 political authority + 0.600000 0.115385 0.193548 26.000000 social justice + 0.666667 0.133333 0.222222 15.000000 accuracy 0.068966 0.068966 0.068966 0.068966 macro avg 0.137634 0.040502 0.059966 203.000000 weighted avg 0.345320 0.068966 0.109487 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 2.6s remaining: 2.6s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 3.6s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1] /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=10000 precision recall f1-score support democracy + 1.000000 0.458333 0.628571 24.0000 environmentalism + 0.666667 0.166667 0.266667 36.0000 freedom/human rights + 0.666667 0.181818 0.285714 11.0000 political authority + 0.500000 0.133333 0.210526 30.0000 accuracy 0.113300 0.113300 0.113300 0.1133 macro avg 0.088542 0.029380 0.043484 203.0000 weighted avg 0.346470 0.113300 0.168199 203.0000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 2.5s remaining: 2.5s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 3.4s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide recall = tps / tps[-1] /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=10000 precision recall f1-score support democracy + 1.000000 0.352941 0.521739 17.000000 education + 0.750000 0.250000 0.375000 12.000000 environmentalism + 0.900000 0.214286 0.346154 42.000000 military + 1.000000 1.000000 1.000000 1.000000 political authority + 1.000000 0.181818 0.307692 22.000000 social justice + 0.750000 0.157895 0.260870 19.000000 accuracy 0.128079 0.128079 0.128079 0.128079 macro avg 0.200000 0.079887 0.104128 203.000000 weighted avg 0.497783 0.128079 0.200166 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 2.5s remaining: 2.5s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 3.4s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=10000 precision recall f1-score support culture + 1.000000 0.333333 0.500000 3.000000 democracy + 0.857143 0.352941 0.500000 17.000000 education + 1.000000 0.100000 0.181818 10.000000 environmentalism + 0.750000 0.103448 0.181818 29.000000 europe + 0.500000 0.500000 0.500000 2.000000 political authority + 0.857143 0.181818 0.300000 33.000000 social justice + 1.000000 0.125000 0.222222 16.000000 accuracy 0.098522 0.098522 0.098522 0.098522 macro avg 0.175420 0.049898 0.070172 203.000000 weighted avg 0.466045 0.098522 0.155401 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 2.5s remaining: 2.5s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 3.7s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=10000 precision recall f1-score support culture + 1.000000 1.000000 1.000000 3.000000 democracy + 0.875000 0.241379 0.378378 29.000000 environmentalism + 1.000000 0.068966 0.129032 29.000000 military + 1.000000 0.250000 0.400000 4.000000 political authority + 0.500000 0.047619 0.086957 21.000000 social justice + 1.000000 0.153846 0.266667 13.000000 accuracy 0.078818 0.078818 0.078818 0.078818 macro avg 0.179167 0.058727 0.075368 203.000000 weighted avg 0.418103 0.078818 0.121220 203.000000 Loading manifesto/manifesto-Germany.csv Fitting 2 folds for each of 3 candidates, totalling 6 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n_jobs=-1)]: Done 3 out of 6 | elapsed: 2.8s remaining: 2.8s [Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 3.9s finished /Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
N=10000 precision recall f1-score support democracy + 1.000000 0.300000 0.461538 20.000000 education + 1.000000 0.250000 0.400000 8.000000 environmentalism + 1.000000 0.051282 0.097561 39.000000 freedom/human rights + 0.666667 0.166667 0.266667 12.000000 infrastructure + 1.000000 0.125000 0.222222 8.000000 political authority + 0.666667 0.066667 0.121212 30.000000 social justice + 1.000000 0.052632 0.100000 19.000000 accuracy 0.078818 0.078818 0.078818 0.078818 macro avg 0.211111 0.033742 0.055640 203.000000 weighted avg 0.600985 0.078818 0.131772 203.000000
/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))
More than 500 manifesto samples lead to decreased classification performance on held-out tweets
mixin_manifesto_df.groupby('N').agg({'f1':np.median}).plot.bar()
<matplotlib.axes._subplots.AxesSubplot at 0x1a1b2cce90>