Notebook
# Draw map of long-term references # This cell is ommitted from display because folium would not play nicely with different browsers at the # time of writing. The output of this cell is shown in the next cell. import folium sandbox_loc = [32.896278, -117.219553] era5_locs = [[32.95000076293945, -117.30000305175781], [32.70000076293945, -117.05000305175781], [32.95000076293945, -117.05000305175781], [32.70000076293945, -117.30000305175781]] asos_locs = [[32.8157, -117.1396], [32.8645, -117.1366], [32.7339, -117.1845]] m = folium.Map(location=sandbox_loc, tiles='Stamen Terrain', zoom_start = 10) folium.Marker(sandbox_loc, popup='The Sandbox').add_to(m) for loc in era5_locs: folium.Marker(loc, popup='ERA5', icon=folium.Icon('orange',icon='glyphicon-globe')).add_to(m) for loc in asos_locs: folium.Marker(loc, popup='ASOS', icon=folium.Icon('purple',icon='glyphicon-plane')).add_to(m) m
# Plot elevation map of area around the Sandbox # This cell is ommitted from display because folium would not play nicely with different browsers at the # time of writing. The output of this cell is shown in the next cell. sandbox_loc = [32.896278, -117.219553] boundary = (-117.64131499443664, 32.47993859936589, -116.06455693096564, 33.52096591638937) m = folium.Map(location=sandbox_loc, tiles='Stamen Toner', zoom_start=14, height=450) folium.Marker(sandbox_loc, popup='The Sandbox').add_to(m) m.add_child( folium.raster_layers.ImageOverlay( str(Path('./data/elev10grd_area_of_interest-min.png').resolve()), opacity=.9, bounds=[[boundary[1], boundary[0]],[boundary[3], boundary[2]]] )) m
# If you are curious, you can use the code below to create an hourly time series. # This might reflect the wind regime better than the daily time series we calculated above. bin_predictions = [] for dir_bin, beta in zip(dir_bins, betas): lt_data_in_bin = lt_data['era5_0'][lt_data['era5_0']['dir'].map(lambda x: x in(dir_bin))]['spd'] bin_prediction = model_fcn(beta, lt_data_in_bin) bin_predictions.append(bin_prediction) lt_speed_at_mast = pd.concat(bin_predictions, axis=0).sort_index() measured_data = data['spd_58'].resample('1h').mean() lt_speed_at_mast[measured_data.index] = measured_data lt_speed_at_turbine_hourly = lt_speed_at_turbine.mean()/lt_speed_at_mast.mean()*lt_speed_at_mast print(lt_speed_at_turbine_hourly.mean())