from fastai.text import *
twitter_data_path = "."
data_lm = (TextList
.from_csv("./twitter-data/", 'train-processed.csv', cols=5)
.split_by_rand_pct()
.label_for_lm()
.databunch(bs=32))
batchsize = 32
learn = language_model_learner(data_lm, AWD_LSTM, drop_mult=0.3)
learn.lr_find()
learn.recorder.plot()
learn.fit_one_cycle(10, 1e-2)
learn.save_encoder('fine_tuned_enc')
data_class = (TextList
.from_csv(twitter_data_path, 'train-processed.csv', cols=5, vocab=data_lm.vocab)
.split_by_rand_pct()
.label_from_df(cols=0)
.databunch())
twitter_classifer_learner = text_classifier_learner(data_class, AWD_LSTM, drop_mult=0.5)
twitter_classifer_learner.load_encoder('fine_tuned_enc')
twitter_classifer_learner.lr_find()
twitter_classifer_learner.recorder.plot()
twitter_classifer_learner.fit_one_cycle(5, 1e-3)
twitter_classifer_learner.freeze_to(-2)
twitter_classifer_learner.fit_one_cycle(1, 1e-3)