See
using LinearAlgebra
M = rand(100,100)#対角化したい行列
E, P = eigen(M)
Eigen{ComplexF64, ComplexF64, Matrix{ComplexF64}, Vector{ComplexF64}} values: 100-element Vector{ComplexF64}: -2.6713385149783693 - 0.5238483074100407im -2.6713385149783693 + 0.5238483074100407im -2.380694749857707 - 1.5819003151310398im -2.380694749857707 + 1.5819003151310398im -2.3445049148115737 - 0.8348768899082996im -2.3445049148115737 + 0.8348768899082996im -2.1226846073905064 - 0.22379425662578242im -2.1226846073905064 + 0.22379425662578242im -2.049294063421365 - 1.6320269189857641im -2.049294063421365 + 1.6320269189857641im -2.0178436003856652 + 0.0im -1.9229326770807857 - 1.7886924334849146im -1.9229326770807857 + 1.7886924334849146im ⋮ 1.9543269536275725 + 0.5040016799489412im 1.9954076975615094 - 1.0426916311345158im 1.9954076975615094 + 1.0426916311345158im 2.0560135421866663 - 0.48888998497523045im 2.0560135421866663 + 0.48888998497523045im 2.416364338786246 + 0.0im 2.486887950907518 - 1.224341365689113im 2.486887950907518 + 1.224341365689113im 2.6754719890150778 - 0.39289719212777263im 2.6754719890150778 + 0.39289719212777263im 3.0130359977740344 + 0.0im 50.0991251975706 + 0.0im vectors: 100×100 Matrix{ComplexF64}: 0.0928227+0.0727977im … 0.00480172+0.0im -0.0897557+0.0im -0.0220687+0.0949872im -0.0683635+0.0im -0.107816+0.0im -0.062205-0.0221392im 0.150972+0.0im -0.104096+0.0im -0.000929597-0.0558679im 0.21009+0.0im -0.105664+0.0im -0.0858376+0.0687551im 0.0157017+0.0im -0.0975072+0.0im 0.0620079-0.0456313im … 0.120079+0.0im -0.104935+0.0im 0.0910325-0.0859799im 0.0523112+0.0im -0.0967437+0.0im -0.0549273+0.0307295im 0.0888397+0.0im -0.106674+0.0im 0.142685+0.0105723im 0.0982881+0.0im -0.0831259+0.0im 0.0213531-0.0756764im -0.0218936+0.0im -0.0993371+0.0im -0.0338946-0.108939im … 0.0366303+0.0im -0.0905221+0.0im 0.0784134+0.105462im 0.0501874+0.0im -0.0885164+0.0im -0.0326154+0.101677im 0.0967074+0.0im -0.103145+0.0im ⋮ ⋱ 0.0293922-0.0230606im -0.0531536+0.0im -0.102552+0.0im 0.0929652+0.0773336im 0.073754+0.0im -0.0988448+0.0im 0.0585327-0.0135158im … 0.0340458+0.0im -0.100852+0.0im 0.0205471-0.0148881im -0.205876+0.0im -0.107353+0.0im 0.174649-0.0368603im -0.0668649+0.0im -0.108233+0.0im -0.0567686-0.0222343im 0.0213794+0.0im -0.100761+0.0im 0.10441-0.0925521im 0.0107639+0.0im -0.0950483+0.0im 0.0780944+0.102672im … -0.166945+0.0im -0.102682+0.0im -0.0634175-0.00904586im 0.0309103+0.0im -0.102103+0.0im -0.11412-0.0948267im 0.0745764+0.0im -0.0954268+0.0im 0.0400251+0.0790165im 0.0617443+0.0im -0.095069+0.0im 0.068089-0.00059643im -0.0551766+0.0im -0.0948394+0.0im
exp(eigen(M))
MethodError: no method matching exp(::Eigen{ComplexF64, ComplexF64, Matrix{ComplexF64}, Vector{ComplexF64}}) Closest candidates are: exp(::Union{Float16, Float32, Float64}) @ Base special\exp.jl:325 exp(::Adjoint{T, <:AbstractMatrix} where T) @ LinearAlgebra D:\Julia-1.9.0-beta2\share\julia\stdlib\v1.9\LinearAlgebra\src\dense.jl:595 exp(::Transpose{T, <:AbstractMatrix} where T) @ LinearAlgebra D:\Julia-1.9.0-beta2\share\julia\stdlib\v1.9\LinearAlgebra\src\dense.jl:596 ... Stacktrace: [1] top-level scope @ In[2]:1
module EigenDecompression
export EigenDecompose, eigDecomp
using LinearAlgebra
import Base.*, Base./
#対角化された行列型
struct EigenDecompose{T<:Number} <: AbstractMatrix{T}
P::AbstractMatrix{T}
D::Diagonal{T}
invP::AbstractMatrix{T}
end
#普通のMatrixを対角化する
function eigDecomp(mat::AbstractMatrix)
E, P = eigen(mat)
EigenDecompose(P, Diagonal(E), inv(P))
end
#EigenDecompose型に対する関数
Base.exp(eig::EigenDecompose) = EigenDecompose(eig.P, exp(eig.D), eig.invP)
*(eig::EigenDecompose, vec::AbstractVector) = eig.P * eig.D * eig.invP * vec
*(eig::EigenDecompose, sc::Number) = EigenDecompose(eig.P, eig.D*sc, eig.invP)
/(eig::EigenDecompose, sc::Number) = EigenDecompose(eig.P, eig.D/sc, eig.invP)
#普通のMatrixに戻す
Base.Array(eig::EigenDecompose) = eig.P * eig.D * eig.invP
end
Main.EigenDecompression
using .EigenDecompression
M = rand(100, 100)
eM = eigDecomp(M)
for i in 1:100
v = rand(100)
rnd = rand()
@assert exp(M*rnd)*v ≈ exp(eM*rnd)*v
end
using BenchmarkTools
M = rand(100, 100);
#普通な方
function bench1(M)
for i in 1:100
v = rand(100)
exp(M*rand())*v
end
end
#今回実装した方
function bench2(M)
eM = eigDecomp(M)
for i in 1:100
v = rand(100)
exp(eM*rand())*v
end
end
bench2 (generic function with 1 method)
@benchmark bench1(M)
BenchmarkTools.Trial: 58 samples with 1 evaluation. Range (min … max): 78.395 ms … 100.653 ms ┊ GC (min … max): 2.43% … 3.65% Time (median): 86.035 ms ┊ GC (median): 2.82% Time (mean ± σ): 87.298 ms ± 4.854 ms ┊ GC (mean ± σ): 3.62% ± 1.60% ▂ █ ▄▄▁▁▄▄▁▁▁▁▁█▁▁█▄▆▁███▄▆▄▄▁██▁▄▄▆▄▁▄▁▁▆▁▄▄▆▁▁▄▆▁▁▁▁▁▁▄▆▁▁▁▁▁▄ ▁ 78.4 ms Histogram: frequency by time 98.7 ms < Memory estimate: 53.80 MiB, allocs estimate: 1900.
@benchmark bench2(M)
BenchmarkTools.Trial: 690 samples with 1 evaluation. Range (min … max): 6.103 ms … 15.411 ms ┊ GC (min … max): 0.00% … 0.00% Time (median): 6.824 ms ┊ GC (median): 0.00% Time (mean ± σ): 7.234 ms ± 1.191 ms ┊ GC (mean ± σ): 0.48% ± 2.20% █▅▂▁ ▃▅▇████▇█▇▆▇▄▃▃▃▃▃▃▃▃▃▃▃▂▃▂▃▂▃▂▂▂▂▂▃▂▂▁▂▂▂▂▂▂▁▂▂▁▂▂▂▂▁▁▁▁▂ ▃ 6.1 ms Histogram: frequency by time 12.3 ms < Memory estimate: 1.82 MiB, allocs estimate: 1728.
using LinearAlgebra
using BenchmarkTools
module EigenDecomposedMatrices
export EigenDecomposed
using LinearAlgebra
using Memoization
struct EigenDecomposed{
T,
TE<:AbstractVector{T},
TP<:AbstractMatrix{T},
TinvP<:AbstractMatrix{T}
} <: AbstractMatrix{T}
E::TE
P::TP
invP::TinvP
end
function EigenDecomposed(A::AbstractMatrix)
E, P = eigen(A)
invP = ishermitian(A) ? P' : inv(P)
EigenDecomposed(E, P, invP)
end
LinearAlgebra.eigvals(ed::EigenDecomposed) = ed.E
LinearAlgebra.eigvecs(ed::EigenDecomposed) = ed.P
inveigvecs(ed::EigenDecomposed) = ed.invP
@memoize Base.parent(ed::EigenDecomposed) = eigvecs(ed) * Diagonal(eigvals(ed)) * inveigvecs(ed)
Base.convert(::Type{Array}, ed::EigenDecomposed) = convert(Array, parent(ed))
for op in (:eltype, :size)
@eval Base.$op(ed::EigenDecomposed) = $op(eigvecs(ed))
end
Base.getindex(ed::EigenDecomposed, I...) = getindex(parent(ed), I...)
Base.:*(c::Number, ed::EigenDecomposed) = EigenDecomposed(c*eigvals(ed), eigvecs(ed), inveigvecs(ed))
Base.:*(ed::EigenDecomposed, c::Number) = EigenDecomposed(eigvals(ed)*c, eigvecs(ed), inveigvecs(ed))
Base.:\(c::Number, ed::EigenDecomposed) = EigenDecomposed(c\eigvals(ed), eigvecs(ed), inveigvecs(ed))
Base.:/(ed::EigenDecomposed, c::Number) = EigenDecomposed(eigvals(ed)/c, eigvecs(ed), inveigvecs(ed))
for T in (AbstractVector, AbstractMatrix)
@eval function Base.:*(ed::EigenDecomposed, v::$T)
E, P, invP = eigvals(ed), eigvecs(ed), inveigvecs(ed)
P * (Diagonal(E) * (invP * v))
end
end
function exp_old(ed::EigenDecomposed)
E, P, invP = eigvals(ed), eigvecs(ed), inveigvecs(ed)
expE = exp.(E)
expA = P * Diagonal(expE) * invP
EigenDecomposed(expE, P, invP)
end
LinearAlgebra.lmul!(c::Number, ed::EigenDecomposed) = lmul!(c, eigvals(ed))
LinearAlgebra.rmul!(ed::EigenDecomposed, c::Number) = rmul!(eigvals(ed), c)
LinearAlgebra.ldiv!(c::Number, ed::EigenDecomposed) = ldiv!(c, eigvals(ed))
LinearAlgebra.rdiv!(ed::EigenDecomposed, c::Number) = rdiv!(eigvals(ed), c)
for op in (:exp, :log, :sin, :cos)
opE = Symbol(op, "E")
op_eigendecomposed = Symbol(op, "_eigendecomposed")
op_eigendecomposed! = Symbol(op_eigendecomposed, "!")
op_eigendecomposed!_doc =
"""
$op_eigendecomposed!(Y, ed::EigenDecomposed, $opE=similar(ed.E), tmpY=similar(Y))
returns the `$op` of `ed` and stores the result in `Y`, overwriting the existing value of `Y`.
It does not overwrite `ed` and uses `$opE` and `tmpY` as workspaces.
"""
@eval begin
@doc $op_eigendecomposed!_doc
function $op_eigendecomposed!(Y, ed::EigenDecomposed, $opE=similar(ed.E), tmpY=similar(Y))
E, P, invP = eigvals(ed), eigvecs(ed), inveigvecs(ed)
@. $opE = $op.(E)
mul!(tmpY, P, Diagonal($opE))
mul!(Y, tmpY, invP)
end
$op_eigendecomposed(ed::EigenDecomposed) = $op_eigendecomposed!(similar(eigvecs(ed)), ed)
Base.$op(ed::EigenDecomposed) = $op_eigendecomposed(ed)
end
end
end
Main.EigenDecomposedMatrices
?EigenDecomposedMatrices.exp_eigendecomposed!
exp_eigendecomposed!(Y, ed::EigenDecomposed, expE=similar(ed.E), tmpY=similar(Y))
returns the exp
of ed
and stores the result in Y
, overwriting the existing value of Y
. It does not overwrite ed
and uses expE
and tmpY
as workspaces.
?EigenDecomposedMatrices.log_eigendecomposed!
log_eigendecomposed!(Y, ed::EigenDecomposed, logE=similar(ed.E), tmpY=similar(Y))
returns the log
of ed
and stores the result in Y
, overwriting the existing value of Y
. It does not overwrite ed
and uses logE
and tmpY
as workspaces.
methods(EigenDecomposedMatrices.EigenDecomposed)
methods(EigenDecomposedMatrices.EigenDecomposed{Float64, Vector{Float64}, Matrix{Float64}, Matrix{Float64}})
methodswith(EigenDecomposedMatrices.EigenDecomposed)
methods(EigenDecomposedMatrices.exp_eigendecomposed!)
methods(EigenDecomposedMatrices.log_eigendecomposed!)
A = [
2 -1 0
-1 2 -1
0 -1 2
]
edA = EigenDecomposedMatrices.EigenDecomposed(A)
3×3 Main.EigenDecomposedMatrices.EigenDecomposed{Float64, Vector{Float64}, Matrix{Float64}, Adjoint{Float64, Matrix{Float64}}}: 2.0 -1.0 -3.33067e-16 -1.0 2.0 -1.0 -3.33067e-16 -1.0 2.0
log(edA)
3×3 Matrix{Float64}: 0.51986 -0.623225 -0.173287 -0.623225 0.346574 -0.623225 -0.173287 -0.623225 0.51986
log(A)
3×3 Matrix{Float64}: 0.51986 -0.623225 -0.173287 -0.623225 0.346574 -0.623225 -0.173287 -0.623225 0.51986
log(edA) ≈ log(A)
true
n = 2^8
M = 5I + randn(n, n)
v = randn(n)
c = randn()
edM = EigenDecomposedMatrices.EigenDecomposed(M)
Y = similar(eigvecs(edM))
expE = similar(eigvals(edM))
tmpY = similar(Y)
y = similar(eigvals(edM))
alpha = randn()
beta = randn();
edM
256×256 Main.EigenDecomposedMatrices.EigenDecomposed{ComplexF64, Vector{ComplexF64}, Matrix{ComplexF64}, Matrix{ComplexF64}}: 3.56334-1.65165e-13im … -0.0799542+7.35922e-14im -1.29471-3.33504e-14im 2.79704-1.73821e-15im 0.188711-1.38904e-14im -0.146065-7.04386e-16im -0.139691-1.2809e-13im -0.11464+1.72234e-13im 0.242261+2.90866e-14im -1.44222+1.48799e-13im 0.476316+3.58411e-14im … 0.497164-2.26801e-13im 0.550097-3.61273e-14im -0.134351+1.41119e-13im 0.717261+1.67825e-13im 0.895324-9.16857e-14im -1.04636-8.49634e-14im -0.190769-2.40075e-13im 1.6971-2.75795e-14im 0.770272-6.1418e-14im 1.26714+5.92264e-14im … -0.567488-1.78777e-13im -0.0854576-1.88943e-14im -0.822014+4.62595e-14im 0.826429+6.51037e-14im -1.53237-1.375e-13im ⋮ ⋱ ⋮ -0.997608-2.67526e-14im 0.0412252+1.99661e-13im -0.0798052-1.49411e-14im … 0.144672-1.3304e-13im -1.17006+1.4458e-14im -0.431936+1.83672e-13im -0.0696381+8.73041e-14im -0.825939-1.10264e-14im 0.553973+1.47842e-14im 1.41854-6.53152e-14im 1.05755+4.38409e-14im -0.994764-9.63611e-14im 0.143704+9.43705e-15im … -0.252374-1.1153e-13im 0.089135-3.98563e-14im -1.87436-1.5556e-14im -1.30653-7.54455e-14im 1.53995-1.05616e-13im 0.642478-5.84129e-14im 1.36199-7.11765e-14im 0.24546-2.13334e-14im 0.401485-2.4925e-14im -1.3641+7.4302e-14im … 5.51035+9.54081e-14im
dump(edM)
Main.EigenDecomposedMatrices.EigenDecomposed{ComplexF64, Vector{ComplexF64}, Matrix{ComplexF64}, Matrix{ComplexF64}} E: Array{ComplexF64}((256,)) ComplexF64[-10.529011730788033 + 0.0im, -10.280415425445305 - 5.0635332402051345im, -10.280415425445305 + 5.0635332402051345im, -9.365531653942693 - 7.310921121421777im, -9.365531653942693 + 7.310921121421777im, -9.066423960276218 - 0.8998268797512045im, -9.066423960276218 + 0.8998268797512045im, -8.732971181835605 - 1.4609873383902336im, -8.732971181835605 + 1.4609873383902336im, -8.46124963643927 - 8.33273467746558im … 18.632067916841073 - 4.578055223585328im, 18.632067916841073 + 4.578055223585328im, 18.93064239638064 - 7.073434597909069im, 18.93064239638064 + 7.073434597909069im, 19.20170503001391 - 3.658032128271094im, 19.20170503001391 + 3.658032128271094im, 20.930683959675996 - 0.7030285754956695im, 20.930683959675996 + 0.7030285754956695im, 21.184754820465372 - 3.0347453281790697im, 21.184754820465372 + 3.0347453281790697im] P: Array{ComplexF64}((256, 256)) ComplexF64[0.016739760214174452 + 0.0im 0.0479671595323605 - 0.01662350156735747im … 0.08231100940410303 + 0.03720618909538042im 0.08231100940410303 - 0.03720618909538042im; -0.05678105463615567 + 0.0im -0.02753855144836508 - 0.03255712650078475im … 0.01670703557346129 + 0.024130937819675107im 0.01670703557346129 - 0.024130937819675107im; … ; 0.023221059785412463 + 0.0im -0.017275722649348676 - 0.009015532372298877im … 0.049235288759355164 + 0.03697492625403338im 0.049235288759355164 - 0.03697492625403338im; -0.0578255784977335 + 0.0im -0.002679638667629752 - 0.007116991095201977im … 0.02694655853750013 + 0.0004816998404853853im 0.02694655853750013 - 0.0004816998404853853im] invP: Array{ComplexF64}((256, 256)) ComplexF64[0.3043258839874642 + 4.5105492045176234e-15im 0.11647828660858314 + 8.454429333244175e-15im … 0.15219311634828636 + 1.4654943925052066e-14im -0.17563710572420543 + 2.1649348980190553e-15im; 0.08912104015473599 + 0.06654733900857696im -0.08069004242424725 + 0.18453572669503732im … -0.2156137951599397 + 0.002174603423839006im 0.02083977906498702 - 0.0641592478208322im; … ; 0.0385888730719014 - 0.09966379283416266im 0.11941897834644964 + 0.033343849341449926im … -0.10247759199925907 + 0.07210367195681458im 0.048176002794752926 - 0.18025959146290277im; 0.03858887307190356 + 0.09966379283416041im 0.1194189783464544 - 0.03334384934145064im … -0.1024775919992489 - 0.07210367195681436im 0.048176002794748166 + 0.18025959146290615im]
M ≈ parent(edM) == Matrix(edM)
true
M ≈ edM
true
c*M ≈ c*edM ≈ edM*c
true
c\M ≈ c\edM ≈ edM/c
true
(
exp(M)
≈ exp(edM)
≈ EigenDecomposedMatrices.exp_old(edM)
≈ EigenDecomposedMatrices.exp_eigendecomposed!(Y, edM)
≈ EigenDecomposedMatrices.exp_eigendecomposed!(Y, edM, expE, tmpY)
)
true
@show typeof(y)
(
exp(M) * v
≈ exp(edM) * v
≈ EigenDecomposedMatrices.exp_old(edM) * v
≈ mul!(y, EigenDecomposedMatrices.exp_eigendecomposed!(Y, edM), v)
≈ mul!(y, EigenDecomposedMatrices.exp_eigendecomposed!(Y, edM, expE, tmpY), v)
)
typeof(y) = Vector{ComplexF64}
true
@btime edM = EigenDecomposedMatrices.EigenDecomposed(M);
40.167 ms (26 allocations: 3.53 MiB)
@btime exp($M) * $v
@btime exp($edM) * $v
@btime EigenDecomposedMatrices.exp_old($edM) * $v
@btime mul!($y, EigenDecomposedMatrices.exp_eigendecomposed!($Y, $edM), $v)
@btime mul!($y, EigenDecomposedMatrices.exp_eigendecomposed!($Y, $edM, $expE, $tmpY), $v);
10.090 ms (16 allocations: 3.01 MiB) 2.712 ms (7 allocations: 2.01 MiB) 2.696 ms (9 allocations: 2.02 MiB) 2.540 ms (3 allocations: 1.00 MiB) 2.447 ms (0 allocations: 0 bytes)
n2 = 2^8
M2 = Symmetric(5I + randn(n2, n2))
v2 = randn(n)
c2 = randn()
edM2 = EigenDecomposedMatrices.EigenDecomposed(M2)
Y2 = similar(eigvecs(edM2))
expE2 = similar(eigvals(edM2))
tmpY2 = similar(Y2)
y2 = similar(eigvals(edM2))
alpha2 = randn()
beta2 = randn();
edM2
256×256 Main.EigenDecomposedMatrices.EigenDecomposed{Float64, Vector{Float64}, Matrix{Float64}, Adjoint{Float64, Matrix{Float64}}}: 6.03077 -0.43245 0.599883 … -0.872836 0.980907 -0.43245 7.07582 -0.965762 -2.46577 1.27889 0.599883 -0.965762 6.28325 -0.897865 0.902268 0.554185 -1.61176 -1.88607 1.52239 -0.800269 -0.0394612 -0.472386 -2.16329 -0.666488 1.60583 -0.684983 0.673263 1.44873 … -1.11132 -1.06482 0.544451 1.8252 0.567267 0.568297 1.60087 -0.60012 -1.6835 -0.332066 0.151455 -1.76098 -1.32028 -1.71558 -0.503773 -0.276013 1.46591 -0.619846 0.546905 -1.79987 0.501719 0.114942 -1.96161 0.575018 -0.648195 … 1.16492 -1.17966 -0.303545 -0.670053 0.967682 -0.000749713 0.373673 1.33041 -0.0295437 -0.717992 0.155946 1.85579 ⋮ ⋱ ⋮ -0.590561 0.333331 0.250405 0.90949 -1.53465 -0.748456 1.29363 0.1356 … -1.60434 0.683966 1.53178 0.157997 0.00791121 -1.8972 0.444282 0.269089 -0.167004 1.49271 -0.630714 -2.68816 2.1885 -1.43587 -1.18202 -1.17287 1.17593 -0.787258 -0.512251 -0.294453 2.0117 0.0495256 -0.550615 -0.564627 1.8215 … 0.254222 -0.881607 1.39278 0.444108 0.341001 -0.411732 0.491344 0.960274 -0.737275 0.302913 1.16593 -0.539727 -1.638 -0.849312 0.108656 -0.763322 1.67947 -0.872836 -2.46577 -0.897865 6.45844 0.754344 0.980907 1.27889 0.902268 … 0.754344 5.11205
dump(edM2)
Main.EigenDecomposedMatrices.EigenDecomposed{Float64, Vector{Float64}, Matrix{Float64}, Adjoint{Float64, Matrix{Float64}}} E: Array{Float64}((256,)) [-26.281246714455474, -26.079893599626686, -25.32277485066867, -25.0801104625073, -23.954875700929986, -23.74285195174835, -23.168019607432065, -22.60925439400774, -22.454572564359246, -21.705343122758094 … 31.569737139516377, 32.20706026446964, 32.53684276189552, 33.124400141791504, 33.974663809226215, 34.44625078387939, 34.499597457606136, 34.84570025054353, 36.07654166938045, 36.899884804719484] P: Array{Float64}((256, 256)) [0.1449279306214216 0.005919536496859418 … 0.00196042283590344 0.005370199356810865; 0.0977684655406359 -0.04973701370055792 … -0.0878992312227967 -0.05778779773302181; … ; 0.04308743597446929 0.04324139883354045 … -0.019127423566981328 -0.04138098814577151; -0.13325192873325928 -0.028583547120122572 … 0.12277657998369695 -0.056353074728779456] invP: Adjoint{Float64, Matrix{Float64}} parent: Array{Float64}((256, 256)) [0.1449279306214216 0.005919536496859418 … 0.00196042283590344 0.005370199356810865; 0.0977684655406359 -0.04973701370055792 … -0.0878992312227967 -0.05778779773302181; … ; 0.04308743597446929 0.04324139883354045 … -0.019127423566981328 -0.04138098814577151; -0.13325192873325928 -0.028583547120122572 … 0.12277657998369695 -0.056353074728779456]
M2 ≈ parent(edM2) == Matrix(edM2)
true
M2 ≈ edM2
true
c2*M2 ≈ c2*edM2 ≈ edM2*c2
true
c2\M2 ≈ c2\edM2 ≈ edM2/c2
true
(
exp(M2)
≈ exp(edM2)
≈ EigenDecomposedMatrices.exp_old(edM2)
≈ EigenDecomposedMatrices.exp_eigendecomposed!(Y2, edM2)
≈ EigenDecomposedMatrices.exp_eigendecomposed!(Y2, edM2, expE2, tmpY2)
)
true
@show typeof(y2)
(
exp(M2) * v2
≈ exp(edM2) * v2
≈ EigenDecomposedMatrices.exp_old(edM2) * v2
≈ mul!(y2, EigenDecomposedMatrices.exp_eigendecomposed!(Y2, edM2), v2)
≈ mul!(y2, EigenDecomposedMatrices.exp_eigendecomposed!(Y2, edM2, expE2, tmpY2), v2)
)
typeof(y2) = Vector{Float64}
true
@btime edM2 = EigenDecomposedMatrices.EigenDecomposed(M2);
6.472 ms (14 allocations: 1.59 MiB)
@btime exp($M2) * $v2
@btime exp($edM2) * $v2
@btime EigenDecomposedMatrices.exp_old($edM2) * $v2
@btime mul!($y2, EigenDecomposedMatrices.exp_eigendecomposed!($Y2, $edM2), $v2)
@btime mul!($y2, EigenDecomposedMatrices.exp_eigendecomposed!($Y2, $edM2, $expE2, $tmpY2), $v2);
7.427 ms (19 allocations: 2.60 MiB) 726.000 μs (6 allocations: 1.00 MiB) 719.700 μs (8 allocations: 1.01 MiB) 690.300 μs (3 allocations: 514.17 KiB) 662.900 μs (0 allocations: 0 bytes)