from geoscilabs.em.HarmonicVMDCylWidget import HarmonicVMDCylWidget
vmd = HarmonicVMDCylWidget()
from matplotlib import rcParams
rcParams['font.size'] = 16
Here, we show fields and fluxes that result from placing a transient vertical magnetic dipole (VMD) source over an Earth model containing a spherical structure and an overburden layer.
There are two commonly used models for describing a harmonic VMD source: 1) as an infinitessimally small bar magnet that experiences a harmonic magnetization in the vertical direction, and 2) as an infinitessimally small horizontal loop of wire carrying a harmonic current. In either case, the harmonic VMD creates a primary harmonic magnetic field in its viscinity; which is vertical at the location of the source.
True dipole sources do not exist in nature however they can be approximated in practice. For geophysical applications, small wire loops carrying harmonic current are used to approximate harmonic VMD sources. These EM sources may be placed on the Earth's surface (ground-based surveys) or flown through the air (airborne surveys). Because the source's primary field is harmonic, it induces anomalous currents in the Earth. The distribution and strength of the induced currents depends on the frequency of the harmonic VMD source and the subsurface conductivity distribution. The induced current ultimately produce secondary magnetic fields which can be measured by one or more receivers.
In this app, we explore the following:
The geological scenario being modeled is shown in the figure below. Here, the Earth is comprised of a spherical structure and overburden layer within a homogeneous background. Each of the three geological units has its own conductivity ($\sigma$). However, a constant magnetic susceptibility ($\chi$) is used for all units; where $\mu_0$ is the magnetic permeability of free space and $\mu = \mu_0 (1 +\chi)$. The depth to the layer is given by $d_1$ and $h$.
In this case, a harmonic VMD source (Tx) is used to excite the Earth, and the Earth's FEM response (secondary magnetic field) is measured by a receiver (Rx). In practice, the transmitter and receiver may be placed near the Earth's surface or in the air. The source may also operate at a variety of frequencies. Because we are operating in the frequency domain, fields and currents within the region have both real and imaginary components.
To understand the fields and currents resulting from a harmonic VMD source over a layered Earth we have two apps:
Follow the exercise in a linear fashion. Some questions may use parameters set in a previous question.
We use this app to simulate the fields and currents everywhere due to a harmonic VMD source. The fields and induced currents depend on the frequency of the harmonic VMD source and the subsurface conductivity distribution. You will use the app to change various parameters in the model and see how the fields and currents change.
vmd.InteractivePlane_Sphere()
Using this app, we show how the fields observed at the receiver location depend on the parameters set in the previous app. Note that if you want to see changes in the data due to changes in the model, you MUST re-run the previous app.
vmd.InteractiveData_Sphere()
EM fields will be depenent upon a number of parameters, using a simple half-space model ($\sigma_1=\sigma_2=\sigma_3$) explore how EM fields and data changes upon below four parameters.