# Copyright 2010-2017 Google
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import collections
from ortools.sat.python import cp_model
def MinimalCpSat():
# Creates the model.
model = cp_model.CpModel()
# Creates the variables.
num_vals = 3
x = model.NewIntVar(0, num_vals - 1, "x")
y = model.NewIntVar(0, num_vals - 1, "y")
z = model.NewIntVar(0, num_vals - 1, "z")
# Create the constraints.
model.Add(x != y)
# Create a solver and solve.
solver = cp_model.CpSolver()
status = solver.Solve(model)
if status == cp_model.MODEL_SAT:
print("x = %i" % solver.Value(x))
print("y = %i" % solver.Value(y))
print("z = %i" % solver.Value(z))
class VarArraySolutionPrinter(cp_model.CpSolverSolutionCallback):
"""Print intermediate solutions."""
def __init__(self, variables):
self.__variables = variables
self.__solution_count = 0
def NewSolution(self):
self.__solution_count += 1
for v in self.__variables:
print('%s=%i' % (v, self.Value(v)), end = ' ')
print()
def SolutionCount(self):
return self.__solution_count
def MinimalCpSatAllSolutions():
# Creates the model.
model = cp_model.CpModel()
# Creates the variables.
num_vals = 3
x = model.NewIntVar(0, num_vals - 1, "x")
y = model.NewIntVar(0, num_vals - 1, "y")
z = model.NewIntVar(0, num_vals - 1, "z")
# Create the constraints.
model.Add(x != y)
# Create a solver and solve.
solver = cp_model.CpSolver()
solution_printer = VarArraySolutionPrinter([x, y, z])
status = solver.SearchForAllSolutions(model, solution_printer)
print('Number of solutions found: %i' % solution_printer.SolutionCount())
def SolvingLinearProblem():
# Create a model.
model = cp_model.CpModel()
# x and y are integer non-negative variables.
x = model.NewIntVar(0, 17, 'x')
y = model.NewIntVar(0, 17, 'y')
model.Add(2*x + 14*y <= 35)
model.Add(2*x <= 7)
obj_var = model.NewIntVar(0, 1000, "obj_var")
model.Add(obj_var == x + 10*y)
objective = model.Maximize(obj_var)
# Create a solver and solve.
solver = cp_model.CpSolver()
status = solver.Solve(model)
if status == cp_model.OPTIMAL:
print("Objective value: %i" % solver.ObjectiveValue())
print()
print('x= %i' % solver.Value(x))
print('y= %i' % solver.Value(y))
def MinimalJobShop():
# Create the model.
model = cp_model.CpModel()
machines_count = 3
jobs_count = 3
all_machines = range(0, machines_count)
all_jobs = range(0, jobs_count)
# Define data.
machines = [[0, 1, 2],
[0, 2, 1],
[1, 2]]
processing_times = [[3, 2, 2],
[2, 1, 4],
[4, 3]]
# Computes horizon.
horizon = 0
for job in all_jobs:
horizon += sum(processing_times[job])
Task = collections.namedtuple('Task', 'start end interval')
AssignedTask = collections.namedtuple('AssignedTask', 'start job index')
# Creates jobs.
all_tasks = {}
for job in all_jobs:
for index in range(0, len(machines[job])):
start_var = model.NewIntVar(0, horizon, 'start_%i_%i' % (job, index))
duration = processing_times[job][index]
end_var = model.NewIntVar(0, horizon, 'end_%i_%i' % (job, index))
interval_var = model.NewIntervalVar(start_var, duration, end_var,
'interval_%i_%i' % (job, index))
all_tasks[(job, index)] = Task(start=start_var,
end=end_var,
interval=interval_var)
# Creates sequence variables and add disjunctive constraints.
for machine in all_machines:
intervals = []
for job in all_jobs:
for index in range(0, len(machines[job])):
if machines[job][index] == machine:
intervals.append(all_tasks[(job, index)].interval)
model.AddNoOverlap(intervals)
# Add precedence contraints.
for job in all_jobs:
for index in range(0, len(machines[job]) - 1):
model.Add(all_tasks[(job, index + 1)].start >=
all_tasks[(job, index)].end)
# Makespan objective.
obj_var = model.NewIntVar(0, horizon, 'makespan')
model.AddMaxEquality(
obj_var, [all_tasks[(job, len(machines[job]) - 1)].end
for job in all_jobs])
model.Minimize(obj_var)
# Solve model.
solver = cp_model.CpSolver()
status = solver.Solve(model)
if status == cp_model.OPTIMAL:
# Print out makespan.
print('Optimal Schedule Length: %i' % solver.ObjectiveValue())
print()
# Create one list of assigned tasks per machine.
assigned_jobs = [[] for _ in range(machines_count)]
for job in all_jobs:
for index in range(len(machines[job])):
machine = machines[job][index]
assigned_jobs[machine].append(
AssignedTask(start = solver.Value(all_tasks[(job, index)].start),
job = job, index = index))
disp_col_width = 10
sol_line = ""
sol_line_tasks = ""
print("Optimal Schedule", "\n")
for machine in all_machines:
# Sort by starting time.
assigned_jobs[machine].sort()
sol_line += "Machine " + str(machine) + ": "
sol_line_tasks += "Machine " + str(machine) + ": "
for assigned_task in assigned_jobs[machine]:
name = 'job_%i_%i' % (assigned_task.job, assigned_task.index)
# Add spaces to output to align columns.
sol_line_tasks += name + " " * (disp_col_width - len(name))
start = assigned_task.start
duration = processing_times[assigned_task.job][assigned_task.index]
sol_tmp = "[%i,%i]" % (start, start + duration)
# Add spaces to output to align columns.
sol_line += sol_tmp + " " * (disp_col_width - len(sol_tmp))
sol_line += "\n"
sol_line_tasks += "\n"
print(sol_line_tasks)
print("Time Intervals for Tasks\n")
print(sol_line)
def main():
MinimalCpSat()
MinimalCpSatAllSolutions()
SolvingLinearProblem()
MinimalJobShop()
if __name__ == '__main__':
main()