# Copyright 2010-2017 Google
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Gate Scheduling problem.
We have a set of jobs to perform (duration, width).
We have two parallel machines that can perform this job.
One machine can only perform one job at a time.
At any point in time, the sum of the width of the two active jobs does not
exceed a max_length.
The objective is to minimize the max end time of all jobs.
"""
from ortools.sat.python import cp_model
from ortools.sat.python import visualization
model = cp_model.CpModel()
jobs = [[3, 3], [2, 5], [1, 3], [3, 7], [7, 3], [2, 2], [2, 2], [5, 5],
[10, 2], [4, 3], [2, 6], [1, 2], [6, 8], [4, 5], [3, 7]]
max_length = 10
horizon = sum(t[0] for t in jobs)
num_jobs = len(jobs)
all_jobs = range(num_jobs)
intervals = []
intervals0 = []
intervals1 = []
performed = []
starts = []
ends = []
demands = []
for i in all_jobs:
# Create main interval.
start = model.NewIntVar(0, horizon, 'start_%i' % i)
duration = jobs[i][0]
end = model.NewIntVar(0, horizon, 'end_%i' % i)
interval = model.NewIntervalVar(start, duration, end, 'interval_%i' % i)
starts.append(start)
intervals.append(interval)
ends.append(end)
demands.append(jobs[i][1])
performed_on_m0 = model.NewBoolVar('perform_%i_on_m0' % i)
performed.append(performed_on_m0)
# Create an optional copy of interval to be executed on machine 0.
start0 = model.NewIntVar(0, horizon, 'start_%i_on_m0' % i)
end0 = model.NewIntVar(0, horizon, 'end_%i_on_m0' % i)
interval0 = model.NewOptionalIntervalVar(
start0, duration, end0, performed_on_m0, 'interval_%i_on_m0' % i)
intervals0.append(interval0)
# Create an optional copy of interval to be executed on machine 1.
start1 = model.NewIntVar(0, horizon, 'start_%i_on_m1' % i)
end1 = model.NewIntVar(0, horizon, 'end_%i_on_m1' % i)
interval1 = model.NewOptionalIntervalVar(start1, duration, end1,
performed_on_m0.Not(),
'interval_%i_on_m1' % i)
intervals1.append(interval1)
# We only propagate the constraint if the tasks is performed on the machine.
model.Add(start0 == start).OnlyEnforceIf(performed_on_m0)
model.Add(start1 == start).OnlyEnforceIf(performed_on_m0.Not())
# Max Length constraint (modeled as a cumulative)
model.AddCumulative(intervals, demands, max_length)
# Choose which machine to perform the jobs on.
model.AddNoOverlap(intervals0)
model.AddNoOverlap(intervals1)
# Objective variable.
makespan = model.NewIntVar(0, horizon, 'makespan')
model.AddMaxEquality(makespan, ends)
model.Minimize(makespan)
# Symmetry breaking.
model.Add(performed[0] == 0)
# Solve model.
solver = cp_model.CpSolver()
solver.Solve(model)
# Output solution.
if visualization.RunFromIPython():
output = visualization.SvgWrapper(solver.ObjectiveValue(), max_length, 40.0)
output.AddTitle('Makespan = %i' % solver.ObjectiveValue())
color_manager = visualization.ColorManager()
color_manager.SeedRandomColor(0)
for i in all_jobs:
performed_machine = 1 - solver.Value(performed[i])
start = solver.Value(starts[i])
dx = jobs[i][0]
dy = jobs[i][1]
sy = performed_machine * (max_length - dy)
output.AddRectangle(start, sy, dx, dy, color_manager.RandomColor(),
'black', 'j%i' % i)
output.AddXScale()
output.AddYScale()
output.Display()
else:
print('Solution')
print(' - makespan = %i' % solver.ObjectiveValue())
for i in all_jobs:
performed_machine = 1 - solver.Value(performed[i])
start = solver.Value(starts[i])
print(' - Job %i starts at %i on machine %i' % (i, start,
performed_machine))
print('Statistics')
print(' - conflicts : %i' % solver.NumConflicts())
print(' - branches : %i' % solver.NumBranches())
print(' - wall time : %f ms' % solver.WallTime())