Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
First, you must install ortools package in this colab.
%pip install ortools
Example of a simple nurse scheduling problem.
from ortools.sat.python import cp_model
def main() -> None:
# Data.
num_nurses = 4
num_shifts = 3
num_days = 3
all_nurses = range(num_nurses)
all_shifts = range(num_shifts)
all_days = range(num_days)
# Creates the model.
model = cp_model.CpModel()
# Creates shift variables.
# shifts[(n, d, s)]: nurse 'n' works shift 's' on day 'd'.
shifts = {}
for n in all_nurses:
for d in all_days:
for s in all_shifts:
shifts[(n, d, s)] = model.new_bool_var(f"shift_n{n}_d{d}_s{s}")
# Each shift is assigned to exactly one nurse in the schedule period.
for d in all_days:
for s in all_shifts:
model.add_exactly_one(shifts[(n, d, s)] for n in all_nurses)
# Each nurse works at most one shift per day.
for n in all_nurses:
for d in all_days:
model.add_at_most_one(shifts[(n, d, s)] for s in all_shifts)
# Try to distribute the shifts evenly, so that each nurse works
# min_shifts_per_nurse shifts. If this is not possible, because the total
# number of shifts is not divisible by the number of nurses, some nurses will
# be assigned one more shift.
min_shifts_per_nurse = (num_shifts * num_days) // num_nurses
if num_shifts * num_days % num_nurses == 0:
max_shifts_per_nurse = min_shifts_per_nurse
else:
max_shifts_per_nurse = min_shifts_per_nurse + 1
for n in all_nurses:
shifts_worked = []
for d in all_days:
for s in all_shifts:
shifts_worked.append(shifts[(n, d, s)])
model.add(min_shifts_per_nurse <= sum(shifts_worked))
model.add(sum(shifts_worked) <= max_shifts_per_nurse)
# Creates the solver and solve.
solver = cp_model.CpSolver()
solver.parameters.linearization_level = 0
# Enumerate all solutions.
solver.parameters.enumerate_all_solutions = True
class NursesPartialSolutionPrinter(cp_model.CpSolverSolutionCallback):
"""Print intermediate solutions."""
def __init__(self, shifts, num_nurses, num_days, num_shifts, limit):
cp_model.CpSolverSolutionCallback.__init__(self)
self._shifts = shifts
self._num_nurses = num_nurses
self._num_days = num_days
self._num_shifts = num_shifts
self._solution_count = 0
self._solution_limit = limit
def on_solution_callback(self):
self._solution_count += 1
print(f"Solution {self._solution_count}")
for d in range(self._num_days):
print(f"Day {d}")
for n in range(self._num_nurses):
is_working = False
for s in range(self._num_shifts):
if self.value(self._shifts[(n, d, s)]):
is_working = True
print(f" Nurse {n} works shift {s}")
if not is_working:
print(f" Nurse {n} does not work")
if self._solution_count >= self._solution_limit:
print(f"Stop search after {self._solution_limit} solutions")
self.stop_search()
def solutionCount(self):
return self._solution_count
# Display the first five solutions.
solution_limit = 5
solution_printer = NursesPartialSolutionPrinter(
shifts, num_nurses, num_days, num_shifts, solution_limit
)
solver.solve(model, solution_printer)
# Statistics.
print("\nStatistics")
print(f" - conflicts : {solver.num_conflicts}")
print(f" - branches : {solver.num_branches}")
print(f" - wall time : {solver.wall_time} s")
print(f" - solutions found: {solution_printer.solutionCount()}")
main()