Deep Learning models can take quite a bit of time to run, particularly if GPU isn't used.
In the interest of time, you could sample a subset of observations (e.g. $1000$) that are a particular number of your choice (e.g. $6$) and $1000$ observations that aren't that particular number (i.e. $\neq 6$).
We will build a model using that and see how it performs on the test dataset
#Import the required libraries
import numpy as np
np.random.seed(1338)
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.convolutional import Conv2D
from keras.layers.pooling import MaxPooling2D
from keras.utils import np_utils
from keras.optimizers import SGD
#Load the training and testing data
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_test_orig = X_test
from keras import backend as K
When dealing with images & convolutions, it is paramount to handle image_data_format
properly
img_rows, img_cols = 28, 28
if K.image_data_format() == 'channels_first':
shape_ord = (1, img_rows, img_cols)
else: # channel_last
shape_ord = (img_rows, img_cols, 1)
X_train = X_train.reshape((X_train.shape[0],) + shape_ord)
X_test = X_test.reshape((X_test.shape[0],) + shape_ord)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
np.random.seed(1338) # for reproducibilty!!
# Test data
X_test = X_test.copy()
Y = y_test.copy()
# Converting the output to binary classification(Six=1,Not Six=0)
Y_test = Y == 6
Y_test = Y_test.astype(int)
# Selecting the 5918 examples where the output is 6
X_six = X_train[y_train == 6].copy()
Y_six = y_train[y_train == 6].copy()
# Selecting the examples where the output is not 6
X_not_six = X_train[y_train != 6].copy()
Y_not_six = y_train[y_train != 6].copy()
# Selecting 6000 random examples from the data that
# only contains the data where the output is not 6
random_rows = np.random.randint(0,X_six.shape[0],6000)
X_not_six = X_not_six[random_rows]
Y_not_six = Y_not_six[random_rows]
# Appending the data with output as 6 and data with output as <> 6
X_train = np.append(X_six,X_not_six)
# Reshaping the appended data to appropraite form
X_train = X_train.reshape((X_six.shape[0] + X_not_six.shape[0],) + shape_ord)
# Appending the labels and converting the labels to
# binary classification(Six=1,Not Six=0)
Y_labels = np.append(Y_six,Y_not_six)
Y_train = Y_labels == 6
Y_train = Y_train.astype(int)
print(X_train.shape, Y_labels.shape, X_test.shape, Y_test.shape)
# Converting the classes to its binary categorical form
nb_classes = 2
Y_train = np_utils.to_categorical(Y_train, nb_classes)
Y_test = np_utils.to_categorical(Y_test, nb_classes)
# -- Initializing the values for the convolution neural network
nb_epoch = 2 # kept very low! Please increase if you have GPU
batch_size = 64
# number of convolutional filters to use
nb_filters = 32
# size of pooling area for max pooling
nb_pool = 2
# convolution kernel size
nb_conv = 3
sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)
model = Sequential()
model.add(Conv2D(nb_filters, (nb_conv, nb_conv), padding='valid',
input_shape=shape_ord)) # note: the very first layer **must** always specify the input_shape
model.add(Activation('relu'))
model.add(Flatten())
model.add(Dense(nb_classes))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='sgd',
metrics=['accuracy'])
hist = model.fit(X_train, Y_train, batch_size=batch_size,
epochs=nb_epoch, verbose=1,
validation_data=(X_test, Y_test))
import matplotlib.pyplot as plt
%matplotlib inline
plt.figure()
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.plot(hist.history['loss'])
plt.plot(hist.history['val_loss'])
plt.legend(['Training', 'Validation'])
plt.figure()
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.plot(hist.history['acc'])
plt.plot(hist.history['val_acc'])
plt.legend(['Training', 'Validation'], loc='lower right')
print('Available Metrics in Model: {}'.format(model.metrics_names))
# Evaluating the model on the test data
loss, accuracy = model.evaluate(X_test, Y_test, verbose=0)
print('Test Loss:', loss)
print('Test Accuracy:', accuracy)
import matplotlib.pyplot as plt
%matplotlib inline
slice = 15
predicted = model.predict(X_test[:slice]).argmax(-1)
plt.figure(figsize=(16,8))
for i in range(slice):
plt.subplot(1, slice, i+1)
plt.imshow(X_test_orig[i], interpolation='nearest')
plt.text(0, 0, predicted[i], color='black',
bbox=dict(facecolor='white', alpha=1))
plt.axis('off')
model = Sequential()
model.add(Conv2D(nb_filters, (nb_conv, nb_conv),
padding='valid', input_shape=shape_ord))
model.add(Activation('relu'))
model.add(Flatten())
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dense(nb_classes))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='sgd',
metrics=['accuracy'])
model.fit(X_train, Y_train, batch_size=batch_size,
epochs=nb_epoch,verbose=1,
validation_data=(X_test, Y_test))
#Evaluating the model on the test data
score, accuracy = model.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score)
print('Test accuracy:', accuracy)
model = Sequential()
model.add(Conv2D(nb_filters, (nb_conv, nb_conv),
padding='valid',
input_shape=shape_ord))
model.add(Activation('relu'))
model.add(Flatten())
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(nb_classes))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='sgd',
metrics=['accuracy'])
model.fit(X_train, Y_train, batch_size=batch_size,
epochs=nb_epoch,verbose=1,
validation_data=(X_test, Y_test))
#Evaluating the model on the test data
score, accuracy = model.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score)
print('Test accuracy:', accuracy)
model = Sequential()
model.add(Conv2D(nb_filters, (nb_conv, nb_conv),
padding='valid', input_shape=shape_ord))
model.add(Activation('relu'))
model.add(Convolution2D(nb_filters, (nb_conv, nb_conv)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(nb_classes))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='sgd',
metrics=['accuracy'])
model.fit(X_train, Y_train, batch_size=batch_size,
epochs=nb_epoch,verbose=1,
validation_data=(X_test, Y_test))
#Evaluating the model on the test data
score, accuracy = model.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score)
print('Test accuracy:', accuracy)
The above code has been written as a function.
Change some of the hyperparameters and see what happens.
# Function for constructing the convolution neural network
# Feel free to add parameters, if you want
def build_model():
""""""
model = Sequential()
model.add(Conv2D(nb_filters, (nb_conv, nb_conv),
padding='valid',
input_shape=shape_ord))
model.add(Activation('relu'))
model.add(Conv2D(nb_filters, (nb_conv, nb_conv)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(nb_classes))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='sgd',
metrics=['accuracy'])
model.fit(X_train, Y_train, batch_size=batch_size,
epochs=nb_epoch,verbose=1,
validation_data=(X_test, Y_test))
#Evaluating the model on the test data
score, accuracy = model.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score)
print('Test accuracy:', accuracy)
#Timing how long it takes to build the model and test it.
%timeit -n1 -r1 build_model()
Normalize the activations of the previous layer at each batch, i.e. applies a transformation that maintains the mean activation close to 0 and the activation standard deviation close to 1.
from keras.layers.normalization import BatchNormalization
BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True,
beta_initializer='zeros', gamma_initializer='ones', moving_mean_initializer='zeros',
moving_variance_initializer='ones', beta_regularizer=None, gamma_regularizer=None,
beta_constraint=None, gamma_constraint=None)
Conv2D
layer with
data_format="channels_first"
,
set axis=1
in BatchNormalization
.beta
to normalized tensor.
If False, beta
is ignored.gamma
.
If False, gamma
is not used.
When the next layer is linear (also e.g. nn.relu
),
this can be disabled since the scaling
will be done by the next layer.# Try to add a new BatchNormalization layer to the Model
# (after the Dropout layer) - before or after the ReLU Activation