Part I: Introduction
Intro to Artificial Neural Networks
Introduction to Deep Learning Frameworks
core
layerskeras.models.Sequential
and Dense
Part II: Supervised Learning
Fully Connected Networks and Embeddings
Convolutional Neural Networks
meaning of convolutional filters
Visualising ConvNets
Advanced CNN
HandsOn: MNIST Dataset
Deep Convolutiona Neural Networks with Keras (ref: keras.applications
)
Transfer Learning and FineTuning
Hyperparameters Optimisation
Part III: Unsupervised Learning
keras.datasets
Part IV: Recurrent Neural Networks
SimpleRNN
, LSTM
, GRU
PartV: Additional Materials:
This tutorial requires the following packages:
Python version 3.5
numpy
version 1.10 or later: http://www.numpy.org/
scipy
version 0.16 or later: http://www.scipy.org/
matplotlib
version 1.4 or later: http://matplotlib.org/
pandas
version 0.16 or later: http://pandas.pydata.org
scikit-learn
version 0.15 or later: http://scikit-learn.org
keras
version 2.0 or later: http://keras.io
tensorflow
version 1.0 or later: https://www.tensorflow.org
ipython
/jupyter
version 4.0 or later, with notebook support
(Optional but recommended):
pyyaml
hdf5
and h5py
(required if you use model saving/loading functions in keras)The easiest way to get (most) these is to use an all-in-one installer such as Anaconda from Continuum. These are available for multiple architectures.
I'm currently running this tutorial with Python 3 on Anaconda
!python --version
Python 3.5.2
keras.json
(if it does not exist):touch $HOME/.keras/keras.json
{
"epsilon": 1e-07,
"backend": "tensorflow",
"floatx": "float32",
"image_data_format": "channels_last"
}
!cat ~/.keras/keras.json
{ "epsilon": 1e-07, "backend": "tensorflow", "floatx": "float32", "image_data_format": "channels_last" }
import numpy as np
import scipy as sp
import pandas as pd
import matplotlib.pyplot as plt
import sklearn
import keras
Using TensorFlow backend.
import numpy
print('numpy:', numpy.__version__)
import scipy
print('scipy:', scipy.__version__)
import matplotlib
print('matplotlib:', matplotlib.__version__)
import IPython
print('iPython:', IPython.__version__)
import sklearn
print('scikit-learn:', sklearn.__version__)
numpy: 1.11.1 scipy: 0.18.0 matplotlib: 1.5.2 iPython: 5.1.0 scikit-learn: 0.18
import keras
print('keras: ', keras.__version__)
# optional
import theano
print('Theano: ', theano.__version__)
import tensorflow as tf
print('Tensorflow: ', tf.__version__)
keras: 2.0.2 Theano: 0.9.0 Tensorflow: 1.0.1