Important: Please read the installation page for details about how to install the toolboxes. $\newcommand{\dotp}[2]{\langle #1, #2 \rangle}$ $\newcommand{\enscond}[2]{\lbrace #1, #2 \rbrace}$ $\newcommand{\pd}[2]{ \frac{ \partial #1}{\partial #2} }$ $\newcommand{\umin}[1]{\underset{#1}{\min}\;}$ $\newcommand{\umax}[1]{\underset{#1}{\max}\;}$ $\newcommand{\umin}[1]{\underset{#1}{\min}\;}$ $\newcommand{\uargmin}[1]{\underset{#1}{argmin}\;}$ $\newcommand{\norm}[1]{\|#1\|}$ $\newcommand{\abs}[1]{\left|#1\right|}$ $\newcommand{\choice}[1]{ \left\{ \begin{array}{l} #1 \end{array} \right. }$ $\newcommand{\pa}[1]{\left(#1\right)}$ $\newcommand{\diag}[1]{{diag}\left( #1 \right)}$ $\newcommand{\qandq}{\quad\text{and}\quad}$ $\newcommand{\qwhereq}{\quad\text{where}\quad}$ $\newcommand{\qifq}{ \quad \text{if} \quad }$ $\newcommand{\qarrq}{ \quad \Longrightarrow \quad }$ $\newcommand{\ZZ}{\mathbb{Z}}$ $\newcommand{\CC}{\mathbb{C}}$ $\newcommand{\RR}{\mathbb{R}}$ $\newcommand{\EE}{\mathbb{E}}$ $\newcommand{\Zz}{\mathcal{Z}}$ $\newcommand{\Ww}{\mathcal{W}}$ $\newcommand{\Vv}{\mathcal{V}}$ $\newcommand{\Nn}{\mathcal{N}}$ $\newcommand{\NN}{\mathcal{N}}$ $\newcommand{\Hh}{\mathcal{H}}$ $\newcommand{\Bb}{\mathcal{B}}$ $\newcommand{\Ee}{\mathcal{E}}$ $\newcommand{\Cc}{\mathcal{C}}$ $\newcommand{\Gg}{\mathcal{G}}$ $\newcommand{\Ss}{\mathcal{S}}$ $\newcommand{\Pp}{\mathcal{P}}$ $\newcommand{\Ff}{\mathcal{F}}$ $\newcommand{\Xx}{\mathcal{X}}$ $\newcommand{\Mm}{\mathcal{M}}$ $\newcommand{\Ii}{\mathcal{I}}$ $\newcommand{\Dd}{\mathcal{D}}$ $\newcommand{\Ll}{\mathcal{L}}$ $\newcommand{\Tt}{\mathcal{T}}$ $\newcommand{\si}{\sigma}$ $\newcommand{\al}{\alpha}$ $\newcommand{\la}{\lambda}$ $\newcommand{\ga}{\gamma}$ $\newcommand{\Ga}{\Gamma}$ $\newcommand{\La}{\Lambda}$ $\newcommand{\si}{\sigma}$ $\newcommand{\Si}{\Sigma}$ $\newcommand{\be}{\beta}$ $\newcommand{\de}{\delta}$ $\newcommand{\De}{\Delta}$ $\newcommand{\phi}{\varphi}$ $\newcommand{\th}{\theta}$ $\newcommand{\om}{\omega}$ $\newcommand{\Om}{\Omega}$
This numerical tour explores fluid dynamics for image generation.
using PyPlot
using NtToolBox
using Interpolations
A velocity flow is simply a 2-D vector field $V = (V_i)_{i=1}^N \in \RR^{n \times n \times 2}$ where $V_i \in \RR^2$ is one of the $N=n \times n$ vectors at a position indexed by $i$.
It can be generated as a realization of Gaussian process. The blurring creates correlations in the flow.
n = 128
V = perform_blurring(randn(n,n,2),[40], "per");
Subsampling display operator.
myplot = V-> plot_vf(V[1:6:n,1:6:n, :])
(::#1) (generic function with 1 method)
We can display the vector field using arrow.
figure(figsize = (7,7))
myplot(V)
We can renormalize the flow, which enhances the singularities. It defines $\tilde V$ as $\tilde V_i = V_i/\norm{V_i}$.
Normalize = V -> V ./ repeat( max(1e-9,sqrt.(sum(V.^2, 3))) , outer=(1,1,2));
Display.
figure(figsize = (7,7))
myplot(Normalize(V))
An incompressible flow has a vanishing divergence. The set of vector incompressible flow defines a sub-space of $\RR^{n \times n \times 2}$ $$ \Ii = \enscond{V}{ \text{div}(V)=0 } \qwhereq \text{div}(V) = \pd{V}{x_1} + \pd{V}{x_2} \in \RR^{n \times n}. $$ Here $\pd{}{x_s}$ for $s=1,2$ are finite differences approximation of the horizontal and vertical derivative operators (we suppose here periodic boundary conditions).
The orthogonal projection $U = \text{Proj}_{\Ii}(V)$ on $\Ii$ is computed by solving a Poisson equation $$ U = V-\nabla A \qwhereq \Delta A = \text{div}(V). $$
This is especially simple for periodic boundary conditions since $A$ can be computed over the Fourier domain as $$ \forall \om \neq 0, \quad \hat A(\om) = \frac{\hat Y(\om)}{\mu(\om)} \qwhereq Y = \text{div}(V) \qandq \mu(\om_1,\om_2) = -4 \sin(\om_1 \pi / n)^2 -4 \sin(\om_2 \pi / n)^2 $$ and $\hat A(0)=0$.
Compute the kernel $\mu(\om)$.
Y, X = meshgrid(0:n-1,0:n-1)
mu = sin.(X*pi/n).^2
mu = -4*(mu + mu')
mu[1,1] = 1;
Computation of $A$.
A = V -> real.(ifft(fft(Div(V[:,:,1], V[:,:,2], "per"))./mu))
(::#5) (generic function with 1 method)
Projection on incompressible flows.
ProjI = V -> V - Grad(A(V), "per")
(::#7) (generic function with 1 method)
Display $U=\text{Proj}_{\Ii}(V)$.
U = ProjI(V)
figure(figsize=(7,7))
myplot(U)
Display $W=U-V$ the irrotational component of $V$.
figure(figsize=(7,7))
myplot(V-U)
Note that the decomposition $V=U+W$ is called the Hoge decomposition of the vector field.
A flow defines a warping operator that transport the content of an image along the streaming of the flow.
We load an image $f$.
f = load_image("NtToolBox/src/data/lena.png", 2*n)
f = f[n-Base.div(n,2):n+Base.div(n,2)-1, n-Base.div(n,2):n+Base.div(n,2)-1];
Given some vector field $U$, the warping operator $f_1 = \Ww_U(f)$ along the flow is defined $$ f_1(x) = f(x+U(x)) $$ i.e. it advects the values of $f$ by the vector field $U$ to obtain the values of $f_1$.
We define $U$ as a scaled normalized incompressible flow.
U = Normalize(ProjI(V));
Helper function: enforce periodicity.
periodic = P -> cat(3, mod(P[:,:,1]-1,n)+1, mod(P[:,:,2]-1,n)+1 );
Helper function: extend an image by 1 pixel to avoid boundary problems.
extend1 = f -> [f f[:,1]]
extend = f -> extend1(extend1(f)')';
Helper function: bilinear interpolation on a grid.
f1 = extend(f)
itp = interpolate((1:size(f1,1), 1:size(f1,2)), f1, Gridded(Linear()))
size(itp)
(129,129)
function myinterp(P1,f1,Pi)
itp = interpolate((1:size(f1,1), 1:size(f1,2)), f1, Gridded(Linear()))
itpd = zeros(size(Pi)[1:2])
for i in 1:size(Pi,1)
for j in 1:size(Pi,2)
itpd[i,j] = itp[Pi[i,j,1], Pi[i,j,2]]
end
end
return itpd
end;
First we compute the initial and wraped grids.
(Y,X) = meshgrid(1:n,1:n)
P = cat(3, X,Y)
(Y1,X1) = meshgrid(1:n+1,1:n+1)
P1 = cat(3, X1,Y1);
Defines the warping operator $\Ww_U$.
W = (f, U) -> myinterp(P1, extend(f), periodic(P - U));
Display a warped image $\Ww_{\rho U}(f)$ for some scaling $\rho$.
rho = 2
figure(figsize = (5,5))
imageplot(W(f, rho*U))
Exercise 1
Display $\Ww_{\rho U}(f)$ for various values of $\rho$.
include("NtSolutions/graphics_5_fluids/exo1.jl")