This tour explores image segmentation using parametric active contours. $\newcommand{\dotp}[2]{\langle #1, #2 \rangle}$ $\newcommand{\qandq}{\quad\text{and}\quad}$ $\newcommand{\qwhereq}{\quad\text{where}\quad}$ $\newcommand{\qifq}{ \quad \text{if} \quad }$ $\newcommand{\ZZ}{\mathbb{Z}}$ $\newcommand{\RR}{\mathbb{R}}$ $\newcommand{\CC}{\mathbb{C}}$ $\newcommand{\pa}[1]{\left(#1\right)}$ $\newcommand{\si}{\sigma}$ $\newcommand{\Nn}{\mathcal{N}}$ $\newcommand{\Bb}{\mathcal{B}}$ $\newcommand{\EE}{\mathbb{E}}$ $\newcommand{\norm}[1]{\|#1\|}$ $\newcommand{\abs}[1]{\left|#1\right|}$ $\newcommand{\choice}[1]{ \left\{ \begin{array}{l} #1 \end{array} \right. }$ $\newcommand{\al}{\alpha}$ $\newcommand{\la}{\lambda}$ $\newcommand{\ga}{\gamma}$ $\newcommand{\Ga}{\Gamma}$ $\newcommand{\La}{\Lambda}$ $\newcommand{\si}{\sigma}$ $\newcommand{\Si}{\Sigma}$ $\newcommand{\be}{\beta}$ $\newcommand{\de}{\delta}$ $\newcommand{\De}{\Delta}$ $\newcommand{\phi}{\varphi}$ $\newcommand{\th}{\theta}$ $\newcommand{\om}{\omega}$ $\newcommand{\Om}{\Omega}$
Important: Please read the installation page for details about how to install the toolboxes.
using PyPlot
using NtToolBox
# using Autoreload
# arequire("NtToolBox")
In this tours, the active contours are represented using parametric curve $ \ga : [0,1] \rightarrow \RR^2 $.
This curve is discretized using a piewise linear curve with $p$ segments, and is stored as a complex vector of points in the plane $\ga \in \CC^p$.
Initial polygon.
gamma0 = [.78, .14, .42, .18, .32, .16, .75, .83, .57, .68, .46, .40, .72, .79, .91, .90] + 1im*[.87, .82, .75, .63, .34, .17, .08, .46, .50, .25, .27, .57, .73, .57, .75, .79];
Display the initial curve.
periodize = gamma -> [gamma; [gamma[1]]]
function cplot(gamma, s = "b", lw = 1)
plot(real(periodize(gamma)), imag(periodize(gamma)), s, linewidth = lw)
axis("equal")
axis("off")
end
cplot(gamma0, "b.-")
(0.1015,0.9485,0.040499999999999994,0.9095)
Number of points of the discrete curve.
p = 256;
Shortcut to re-sample a curve according to arc length.
using Dierckx
curvabs = gamma -> [0; cumsum(1e-5 .+ abs(gamma[1:end - 1] - gamma[2:end]) )]
resample11 = (gamma, d) -> evaluate(Spline1D(d./d[end], real(gamma), k=1), (0:p-1)./p)
resample12 = (gamma, d) -> evaluate(Spline1D(d./d[end], imag(gamma), k=1), (0:p-1)./p)
resample = gamma -> resample11( [gamma; gamma[1]], curvabs( [gamma; gamma[1]] ) ) + 1im*resample12( [gamma; gamma[1]], curvabs( [gamma; gamma[1]] ) );
ArgumentError: Module Dierckx not found in current path. Run `Pkg.add("Dierckx")` to install the Dierckx package. in require(::Symbol) at ./loading.jl:365 in require(::Symbol) at /Applications/Julia-0.5.app/Contents/Resources/julia/lib/julia/sys.dylib:?
Initial curve $ \ga_1(t)$.
gamma1 = resample(gamma0);
256-element Array{Complex{Float64},1}: 0.78+0.87im 0.761553+0.868559im 0.743106+0.867118im 0.724659+0.865676im 0.706212+0.864235im 0.687764+0.862794im 0.669317+0.861353im 0.65087+0.859912im 0.632423+0.858471im 0.613976+0.857029im 0.595529+0.855588im 0.577082+0.854147im 0.558635+0.852706im ⋮ 0.889715+0.719573im 0.899979+0.734968im 0.909894+0.750424im 0.905407+0.768371im 0.900921+0.786317im 0.887764+0.798157im 0.872369+0.808421im 0.856974+0.818684im 0.841579+0.828947im 0.826185+0.83921im 0.81079+0.849474im 0.795395+0.859737im
Display the initial curve.
cplot(gamma1, "k");
(0.10727700934498144,0.9481138973125205,0.040705710689687556,0.909490204252872)
Shortcut for forward and backward finite differences.
BwdDiff = c -> c - [c[end]; c[1:end - 1]]
FwdDiff = c -> [c[2:end]; c[1]] - c
dotp = (c1, c2) -> real(c1.*conj(c2));
(::#15) (generic function with 1 method)
The tangent to the curve is computed as $$ t_\ga(s) = \frac{\ga'(t)}{\norm{\ga'(t)}} $$ and the normal is $ n_\ga(t) = t_\ga(t)^\bot. $
Shortcut to compute the tangent and the normal to a curve.
normalize = v -> v./max(abs(v), 1e-10)
tangent = gamma -> normalize( FwdDiff(gamma) )
normal = gamma -> -1im*tangent(gamma);
(::#21) (generic function with 1 method)
Move the curve in the normal direction, by computing $ \ga_1(t) \pm \delta n_{\ga_1}(t) $.
delta = .03
gamma2 = gamma1 .+ delta .* normal(gamma1)
gamma3 = gamma1 .- delta .* normal(gamma1);
256-element Array{Complex{Float64},1}: 0.782337+0.840091im 0.76389+0.83865im 0.745442+0.837209im 0.726995+0.835768im 0.708548+0.834326im 0.690101+0.832885im 0.671654+0.831444im 0.653207+0.830003im 0.63476+0.828562im 0.616313+0.827121im 0.597866+0.825679im 0.579418+0.824238im 0.560971+0.822797im ⋮ 0.864754+0.736214im 0.874728+0.751167im 0.88079+0.743148im 0.876303+0.761095im 0.880853+0.764018im 0.871123+0.773196im 0.855728+0.783459im 0.840333+0.793722im 0.824938+0.803986im 0.809544+0.814249im 0.794149+0.824512im 0.778754+0.834775im
Display the curves.
cplot(gamma1, "k")
cplot(gamma2, "r--")
cplot(gamma3, "b--")
axis("tight")
axis("off")
(0.09818192340611892,0.979037189504653,0.011000256259768873,0.942237845572892)
A curve evolution is a series of curves $ s \mapsto \ga_s $ indexed by an evolution parameter $s \geq 0$. The intial curve $\ga_0$ for $s=0$ is evolved, usually by minizing some energy $E(\ga)$ in a gradient descent $$ \frac{\partial \ga_s}{\partial s} = \nabla E(\ga_s). $$
Note that the gradient of an energy is defined with respect to the curve-dependent inner product $$ \dotp{a}{b} = \int_0^1 \dotp{a(t)}{b(t)} \norm{\ga'(t)} d t. $$ The set of curves can thus be thought as being a Riemannian surface.
The simplest evolution is the mean curvature evolution. It corresponds to minimization of the curve length $$ E(\ga) = \int_0^1 \norm{\ga'(t)} d t $$
The gradient of the length is $$ \nabla E(\ga)(t) = -\kappa_\ga(t) n_\ga(t) $$ where $ \kappa_\ga $ is the curvature, defined as $$ \kappa_\ga(t) = \frac{1}{\norm{\ga'(t)}} \dotp{ t_\ga'(t) }{ n_\ga(t) } . $$
Shortcut for normal times curvature $ \kappa_\ga(t) n_\ga(t) $.
normalC = gamma -> BwdDiff(tangent(gamma)) ./ abs( FwdDiff(gamma) );
(::#23) (generic function with 1 method)
Time step for the evolution. It should be very small because we use an explicit time stepping and the curve has strong curvature.
dt = 0.001 / 100;
1.0e-5
Number of iterations.
Tmax = 3.0 / 100
niter = round(Tmax/dt);
3000.0
Initialize the curve for $s=0$.
gamma = gamma1;
256-element Array{Complex{Float64},1}: 0.78+0.87im 0.761553+0.868559im 0.743106+0.867118im 0.724659+0.865676im 0.706212+0.864235im 0.687764+0.862794im 0.669317+0.861353im 0.65087+0.859912im 0.632423+0.858471im 0.613976+0.857029im 0.595529+0.855588im 0.577082+0.854147im 0.558635+0.852706im ⋮ 0.889715+0.719573im 0.899979+0.734968im 0.909894+0.750424im 0.905407+0.768371im 0.900921+0.786317im 0.887764+0.798157im 0.872369+0.808421im 0.856974+0.818684im 0.841579+0.828947im 0.826185+0.83921im 0.81079+0.849474im 0.795395+0.859737im
Evolution of the curve.
gamma = gamma .+ dt .* normalC(gamma);
256-element Array{Complex{Float64},1}: 0.779911+0.869658im 0.761553+0.868559im 0.743106+0.867118im 0.724659+0.865676im 0.706212+0.864235im 0.687764+0.862794im 0.669317+0.861353im 0.65087+0.859912im 0.632423+0.858471im 0.613976+0.857029im 0.595529+0.855588im 0.577082+0.854147im 0.558635+0.852706im ⋮ 0.889715+0.719573im 0.899971+0.734974im 0.909471+0.750493im 0.905407+0.768371im 0.900638+0.786147im 0.887716+0.798096im 0.872369+0.808421im 0.856974+0.818684im 0.841579+0.828947im 0.826185+0.83921im 0.81079+0.849474im 0.795395+0.859737im
To stabilize the evolution, it is important to re-sample the curve so that it is unit-speed parametrized. You do not need to do it every time step though (to speed up).
gamma = resample(gamma);
256-element Array{Complex{Float64},1}: 0.779911+0.869658im 0.76173+0.868569im 0.743572+0.867154im 0.725414+0.865735im 0.707255+0.864317im 0.689097+0.862898im 0.670939+0.86148im 0.652781+0.860061im 0.634623+0.858642im 0.616465+0.857224im 0.598307+0.855805im 0.580149+0.854387im 0.56199+0.852968im ⋮ 0.890755+0.721134im 0.900799+0.736326im 0.909116+0.752056im 0.905023+0.769802im 0.89969+0.787023im 0.886136+0.799159im 0.871021+0.80932im 0.855866+0.819423im 0.840712+0.829526im 0.825557+0.839629im 0.810403+0.849732im 0.795246+0.859832im
Exercise 1: Perform the curve evolution. You need to resample it a few times.
include("NtSolutions/segmentation_2_snakes_param/exo1.jl")
Geodesic active contours minimize a weighted length $$ E(\ga) = \int_0^1 W(\ga(t)) \norm{\ga'(t)} d t, $$ where $W(x)>0$ is the geodesic metric, that should be small in areas where the image should be segmented.
Size of the image $n$.
n = 200;
200
Create a synthetic weight $W(x)$.
nbumps = 40
theta = rand(nbumps,1).*(2*pi)
r = .6*n/2
a = [.62*n,.6*n]
x = round( a[1] + r*cos(theta) )
y = round( a[2] + r*sin(theta) )
W = zeros(n, n)
for i in 1:nbumps
W[Int(x[i]), Int(y[i])] = 1
end
W = gaussian_blur(W, 6.0)
W = rescale( -min(W, .05), .3,1);
200×200 Array{Float64,2}: 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 … 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 … 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 … 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ⋮ ⋮ ⋱ ⋮ 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 … 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 … 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Display the metric $W$.
imageplot(W)
Pre-compute the gradient $\nabla W(x)$ of the metric.
G = grad(W)
G = G[:,:,1] .+ 1im*G[:, :, 2];
200×200 Array{Complex{Float64},2}: 0.0+0.0im … 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im … 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im … 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im ⋮ ⋱ 5.73319e-13+6.05738e-13im 1.39155e-12+1.44751e-12im 2.52687e-13+2.62457e-13im 6.15064e-13+6.29274e-13im 1.0858e-13+1.11022e-13im … 2.64899e-13+2.66898e-13im 4.57412e-14+4.59632e-14im 1.11466e-13+1.10578e-13im 1.84297e-14+1.82077e-14im 4.55191e-14+4.4853e-14im 7.32747e-15+7.32747e-15im 1.82077e-14+1.77636e-14im 2.88658e-15+2.88658e-15im 7.10543e-15+6.88338e-15im 1.11022e-15+1.11022e-15im … 2.88658e-15+2.66454e-15im 4.44089e-16+4.44089e-16im 8.88178e-16+8.88178e-16im 2.22045e-16+2.22045e-16im 4.44089e-16+4.44089e-16im 0.0+0.0im 2.22045e-16+2.22045e-16im 0.0+0.0im 0.0+0.0im
Display the image of the magnitude $\norm{\nabla W(x)}$ of the gradient.
imageplot(abs(G))
Shortcut to evaluate the gradient and the potential along a curve.
EvalG = gamma -> NtToolBox.bilinear_interpolate(G, imag(gamma), real(gamma))
EvalW = gamma -> NtToolBox.bilinear_interpolate(W, imag(gamma), real(gamma));
(::#27) (generic function with 1 method)
Create a circular curve $\ga_0$.
r = .98*n/2 # radius
p = 128 # number of points on the curve
theta = transpose( linspace(0, 2*pi, p + 1) )
theta = theta[1 : end - 1]
gamma0 = n/2 * (1 + 1im) + r*(cos(theta) + 1im*sin(theta));
Initialize the curve at time $t=0$ with a circle.
gamma = gamma0;
For this experiment, the time step should be larger, because the curve is in $[0,n-1] \times [0,n-1]$.
dt = 1;
Number of iterations.
Tmax = 5000
niter = round(Tmax/ dt);
Display the curve on the background.
lw = 2
clf
imageplot(transpose(W))
cplot(gamma, "r", lw)
(-0.5,199.5,199.5,-0.5)
The gradient of the energy is $$ \nabla E(\ga) = -W(\ga(t)) \kappa_\ga(t) n_\ga(t) + \dotp{\nabla W(\ga(t))}{ n_\ga(t) } n_\ga(t). $$
Pointwise innerproduct on the curve.
dotp = (c1,c2) -> real(c1.*conj(c2));
(::#29) (generic function with 1 method)
Evolution of the curve according to this gradient.
N = normal(gamma)
g = - EvalW(gamma) .* normalC(gamma) + dotp(EvalG(gamma), N) .* N
gamma = (gamma - dt*g);
128-element Array{Complex{Float64},1}: 197.99+100.0im 197.872+104.808im 197.518+109.605im 196.929+114.378im 196.107+119.117im 195.053+123.81im 193.77+128.445im 192.262+133.012im 190.531+137.499im 188.582+141.896im 186.419+146.192im 184.049+150.377im 181.475+154.44im ⋮ 181.476+45.5598im 184.049+49.6232im 186.419+53.8079im 188.582+58.104im 190.531+62.5009im 192.262+66.9882im 193.77+71.5551im 195.053+76.1904im 196.107+80.8831im 196.929+85.6219im 197.518+90.3953im 197.872+95.1919im
To avoid the curve from being poorly sampled, it is important to re-sample it evenly.
gamma = resample(gamma);
128-element Array{Complex{Float64},1}: 197.99+100.0im 197.872+104.808im 197.518+109.605im 196.929+114.378im 196.107+119.117im 195.053+123.81im 193.77+128.445im 192.262+133.012im 190.531+137.499im 188.582+141.896im 186.419+146.192im 184.049+150.377im 181.475+154.44im ⋮ 181.476+45.5598im 184.049+49.6232im 186.419+53.8079im 188.582+58.104im 190.531+62.5009im 192.262+66.9882im 193.77+71.5551im 195.053+76.1904im 196.107+80.8831im 196.929+85.6219im 197.518+90.3953im 197.872+95.1919im
Exercise 2: Perform the curve evolution.
include("NtSolutions/segmentation_2_snakes_param/exo2.jl")
# gamma = copy(gamma0);
# displist = round(linspace(0, niter, 10))
# k = 1;
# clf;
# imageplot(transpose(W));
# track = gamma
# for i in 0 : niter
# N = normal(gamma);
# g = EvalW(gamma) .* normalC(gamma) - dotp(EvalG(gamma), N) .* N;
# gamma = resample( (gamma + dt*g));
# if i == displist[k]
# lw = 1
# if (i == 0) | (i == niter)
# lw = 4
# end
# cplot(gamma, "r", lw);
# k = k + 1;
# axis("equal"); axis("off");
# end
# end
One can use a gradient-based metric to perform edge