Important: Please read the installation page for details about how to install the toolboxes. $\newcommand{\dotp}[2]{\langle #1, #2 \rangle}$ $\newcommand{\enscond}[2]{\lbrace #1, #2 \rbrace}$ $\newcommand{\pd}[2]{ \frac{ \partial #1}{\partial #2} }$ $\newcommand{\umin}[1]{\underset{#1}{\min}\;}$ $\newcommand{\umax}[1]{\underset{#1}{\max}\;}$ $\newcommand{\umin}[1]{\underset{#1}{\min}\;}$ $\newcommand{\uargmin}[1]{\underset{#1}{argmin}\;}$ $\newcommand{\norm}[1]{\|#1\|}$ $\newcommand{\abs}[1]{\left|#1\right|}$ $\newcommand{\choice}[1]{ \left\{ \begin{array}{l} #1 \end{array} \right. }$ $\newcommand{\pa}[1]{\left(#1\right)}$ $\newcommand{\diag}[1]{{diag}\left( #1 \right)}$ $\newcommand{\qandq}{\quad\text{and}\quad}$ $\newcommand{\qwhereq}{\quad\text{where}\quad}$ $\newcommand{\qifq}{ \quad \text{if} \quad }$ $\newcommand{\qarrq}{ \quad \Longrightarrow \quad }$ $\newcommand{\ZZ}{\mathbb{Z}}$ $\newcommand{\CC}{\mathbb{C}}$ $\newcommand{\RR}{\mathbb{R}}$ $\newcommand{\EE}{\mathbb{E}}$ $\newcommand{\Zz}{\mathcal{Z}}$ $\newcommand{\Ww}{\mathcal{W}}$ $\newcommand{\Vv}{\mathcal{V}}$ $\newcommand{\Nn}{\mathcal{N}}$ $\newcommand{\NN}{\mathcal{N}}$ $\newcommand{\Hh}{\mathcal{H}}$ $\newcommand{\Bb}{\mathcal{B}}$ $\newcommand{\Ee}{\mathcal{E}}$ $\newcommand{\Cc}{\mathcal{C}}$ $\newcommand{\Gg}{\mathcal{G}}$ $\newcommand{\Ss}{\mathcal{S}}$ $\newcommand{\Pp}{\mathcal{P}}$ $\newcommand{\Ff}{\mathcal{F}}$ $\newcommand{\Xx}{\mathcal{X}}$ $\newcommand{\Mm}{\mathcal{M}}$ $\newcommand{\Ii}{\mathcal{I}}$ $\newcommand{\Dd}{\mathcal{D}}$ $\newcommand{\Ll}{\mathcal{L}}$ $\newcommand{\Tt}{\mathcal{T}}$ $\newcommand{\si}{\sigma}$ $\newcommand{\al}{\alpha}$ $\newcommand{\la}{\lambda}$ $\newcommand{\ga}{\gamma}$ $\newcommand{\Ga}{\Gamma}$ $\newcommand{\La}{\Lambda}$ $\newcommand{\si}{\sigma}$ $\newcommand{\Si}{\Sigma}$ $\newcommand{\be}{\beta}$ $\newcommand{\de}{\delta}$ $\newcommand{\De}{\Delta}$ $\newcommand{\phi}{\varphi}$ $\newcommand{\th}{\theta}$ $\newcommand{\om}{\omega}$ $\newcommand{\Om}{\Omega}$
This tour explores the use of Fast Marching methods in 2-D.
warning off
addpath('toolbox_signal')
addpath('toolbox_general')
addpath('toolbox_graph')
addpath('solutions/fastmarching_1_2d')
warning on
Shortest paths are 2D curves that minimize a weighted length according to a given metric $W(x)$ for $x \in [0,1]^2$. The metric is usually computed from an input image $f(x)$.
The length of a curve $ t \in [0,1] \mapsto \gamma(t) \in [0,1]^2 $ is $$ L(\gamma) = \int_0^1 W(\gamma(t)) \norm{\gamma'(t)} \text{d} t. $$
Note that $L(\gamma)$ is invariant under re-parameterization of the curve $\gamma$.
A geodesic curve $\gamma$ between two points $x_0$ and $x_1$ has minimum length among curves joining $x_0$ and $x_1$, $$ \umin{\ga(0)=x_0, \ga(1)=x_1} L(\ga). $$ A shortest curve thus tends to pass in areas where $W$ is small.
The geodesic distance between the two points is then $d(x_0,x_1)=L(\gamma)$ is the geodesic distance according to the metric $W$.
The geodesic distance map $D(x)=d(x_0,x)$ to a fixed starting point $x_0$ is the unique viscosity solution of the Eikonal equation $$ \norm{ \nabla D(x)} = W(x) \qandq D(x_0)=0. $$
This equation can be solved numerically in $O(N \log(N))$ operation on a discrete grid of $N$ points.
We load the input image $f$.
clear options;
n = 300;
name = 'road2';
f = rescale( load_image(name, n) );
Display the image.
clf;
imageplot(f);
Define start and end points $x_0$ and $x_1$ (note that you can use your own points).
x0 = [14;161];
x1 = [293;148];
The metric is defined according to $f$ in order to be low at pixel whose value is close to $f(x)$. A typical example is $$ W(x) = \epsilon + \abs{f(x_0)-f(x)} $$ where the value of $ \epsilon>0 $ should be increased in order to obtain smoother paths.
epsilon = 1e-2;
W = epsilon + abs(f-f(x0(1),x0(2)));
Display the metric $W$.
clf;
imageplot(W);
Set options for the propagation: infinite number of iterations, and stop when the front hits the end point.
options.nb_iter_max = Inf;
options.end_points = x1;
Perform the propagation, so that $D(a,b)$ is the geodesic distance between the pixel $x_1=(a,b)$ and the starting point $x_0$. Note that the function |perform_fast_marching| takes as input the inverse of the metric $1/W(x)$.