Wavelet Transform on 3D Meshes

$\newcommand{\dotp}[2]{\langle #1, #2 \rangle}$ $\newcommand{\enscond}[2]{\lbrace #1, #2 \rbrace}$ $\newcommand{\pd}[2]{ \frac{ \partial #1}{\partial #2} }$ $\newcommand{\umin}[1]{\underset{#1}{\min}\;}$ $\newcommand{\umax}[1]{\underset{#1}{\max}\;}$ $\newcommand{\umin}[1]{\underset{#1}{\min}\;}$ $\newcommand{\uargmin}[1]{\underset{#1}{argmin}\;}$ $\newcommand{\norm}[1]{\|#1\|}$ $\newcommand{\abs}[1]{\left|#1\right|}$ $\newcommand{\choice}[1]{ \left\{ \begin{array}{l} #1 \end{array} \right. }$ $\newcommand{\pa}[1]{\left(#1\right)}$ $\newcommand{\diag}[1]{{diag}\left( #1 \right)}$ $\newcommand{\qandq}{\quad\text{and}\quad}$ $\newcommand{\qwhereq}{\quad\text{where}\quad}$ $\newcommand{\qifq}{ \quad \text{if} \quad }$ $\newcommand{\qarrq}{ \quad \Longrightarrow \quad }$ $\newcommand{\ZZ}{\mathbb{Z}}$ $\newcommand{\CC}{\mathbb{C}}$ $\newcommand{\RR}{\mathbb{R}}$ $\newcommand{\EE}{\mathbb{E}}$ $\newcommand{\Zz}{\mathcal{Z}}$ $\newcommand{\Ww}{\mathcal{W}}$ $\newcommand{\Vv}{\mathcal{V}}$ $\newcommand{\Nn}{\mathcal{N}}$ $\newcommand{\NN}{\mathcal{N}}$ $\newcommand{\Hh}{\mathcal{H}}$ $\newcommand{\Bb}{\mathcal{B}}$ $\newcommand{\Ee}{\mathcal{E}}$ $\newcommand{\Cc}{\mathcal{C}}$ $\newcommand{\Gg}{\mathcal{G}}$ $\newcommand{\Ss}{\mathcal{S}}$ $\newcommand{\Pp}{\mathcal{P}}$ $\newcommand{\Ff}{\mathcal{F}}$ $\newcommand{\Xx}{\mathcal{X}}$ $\newcommand{\Mm}{\mathcal{M}}$ $\newcommand{\Ii}{\mathcal{I}}$ $\newcommand{\Dd}{\mathcal{D}}$ $\newcommand{\Ll}{\mathcal{L}}$ $\newcommand{\Tt}{\mathcal{T}}$ $\newcommand{\si}{\sigma}$ $\newcommand{\al}{\alpha}$ $\newcommand{\la}{\lambda}$ $\newcommand{\ga}{\gamma}$ $\newcommand{\Ga}{\Gamma}$ $\newcommand{\La}{\Lambda}$ $\newcommand{\si}{\sigma}$ $\newcommand{\Si}{\Sigma}$ $\newcommand{\be}{\beta}$ $\newcommand{\de}{\delta}$ $\newcommand{\De}{\Delta}$ $\newcommand{\phi}{\varphi}$ $\newcommand{\th}{\theta}$ $\newcommand{\om}{\omega}$ $\newcommand{\Om}{\Omega}$

This tour explores multiscale computation on 3D meshes using the lifting wavelet transform.

In [2]:

Functions Defined on Surfaces

One can define a function on a discrete 3D mesh that assigns a value to each vertex. One can then perform processing of the function according to the geometry of the surface. Here we use a simple sphere.

First compute a multiresolution sphere.

In [3]:
options.base_mesh = 'ico';
options.relaxation = 1;
options.keep_subdivision = 1;
J = 6;
[vertex,face] = compute_semiregular_sphere(J,options);

Options for the display.

In [4]:
options.use_color = 1;
options.rho = .3;
options.color = 'rescale';
options.use_elevation = 0;

Then define a function on the sphere. Here the function is loaded from an image of the earth.

In [5]:
f = load_spherical_function('earth', vertex{end}, options);

Display the function.

In [6]:
plot_spherical_function(vertex,face,f, options);
colormap gray(256);

Wavelet Transform of Functions Defined on Surfaces

A wavelet transform can be used to compress a function defined on a surface. Here we take the example of a 3D sphere. The wavelet transform is implemented with the Lifting Scheme of Sweldens, extended to triangulated meshes by Sweldens and Schroder in a SIGGRAPH 1995 paper.

Perform the wavelet transform.

In [7]:
fw = perform_wavelet_mesh_transform(vertex,face, f, +1, options);

Threshold (remove) most of the coefficient.

In [8]:
r = .1;
fwT = perform_thresholding( fw, round(r*length(fw)), 'largest' );

Backward transform.

In [9]:
f1 = perform_wavelet_mesh_transform(vertex,face, fwT, -1, options);

Display it.

In [10]:
plot_spherical_function(vertex,face,f, options);
title('Original function');
plot_spherical_function(vertex,face,f1, options);
title('Approximated function');
colormap gray(256);

Exercise 1

Plot the approximation curve error as a function of the number of coefficient.

In [11]:
In [12]:
%% Insert your code here.

Exercise 2

Perform denoising of spherical function by thresholding. Study the evolution of the optimal threshold as a function of the noise level.

In [13]:
In [14]:
%% Insert your code here.

Exercise 3

Display a dual wavelet that is used for the reconstruction by taking the inverse transform of a dirac.

In [15]:
In [16]:
%% Insert your code here.

Spherical Geometry Images

A simple way to store a mesh is using a geometry images. This will be usefull to create a semi-regular mesh.

Firs we load a geometry image, which is a |(n,n,3)| array |M| where each |M(:,:,i)| encode a X,Y or Z component of the surface. The concept of geometry images was introduced by Hoppe and collaborators.

In [17]:
name = 'bunny';
M = read_gim([name '-sph.gim']);
n = size(M,1);

A geometry image can be displayed as a color image.

In [18]:

But it can be displayed as a surface. The red curves are the seams in the surface to map it onto a sphere.

In [19]:
plot_geometry_image(M, 1,1);