$\newcommand{\dotp}[2]{\langle #1, #2 \rangle}$ $\newcommand{\enscond}[2]{\lbrace #1, #2 \rbrace}$ $\newcommand{\pd}[2]{ \frac{ \partial #1}{\partial #2} }$ $\newcommand{\umin}[1]{\underset{#1}{\min}\;}$ $\newcommand{\umax}[1]{\underset{#1}{\max}\;}$ $\newcommand{\umin}[1]{\underset{#1}{\min}\;}$ $\newcommand{\uargmin}[1]{\underset{#1}{argmin}\;}$ $\newcommand{\norm}[1]{\|#1\|}$ $\newcommand{\abs}[1]{\left|#1\right|}$ $\newcommand{\choice}[1]{ \left\{ \begin{array}{l} #1 \end{array} \right. }$ $\newcommand{\pa}[1]{\left(#1\right)}$ $\newcommand{\diag}[1]{{diag}\left( #1 \right)}$ $\newcommand{\qandq}{\quad\text{and}\quad}$ $\newcommand{\qwhereq}{\quad\text{where}\quad}$ $\newcommand{\qifq}{ \quad \text{if} \quad }$ $\newcommand{\qarrq}{ \quad \Longrightarrow \quad }$ $\newcommand{\ZZ}{\mathbb{Z}}$ $\newcommand{\CC}{\mathbb{C}}$ $\newcommand{\RR}{\mathbb{R}}$ $\newcommand{\EE}{\mathbb{E}}$ $\newcommand{\Zz}{\mathcal{Z}}$ $\newcommand{\Ww}{\mathcal{W}}$ $\newcommand{\Vv}{\mathcal{V}}$ $\newcommand{\Nn}{\mathcal{N}}$ $\newcommand{\NN}{\mathcal{N}}$ $\newcommand{\Hh}{\mathcal{H}}$ $\newcommand{\Bb}{\mathcal{B}}$ $\newcommand{\Ee}{\mathcal{E}}$ $\newcommand{\Cc}{\mathcal{C}}$ $\newcommand{\Gg}{\mathcal{G}}$ $\newcommand{\Ss}{\mathcal{S}}$ $\newcommand{\Pp}{\mathcal{P}}$ $\newcommand{\Ff}{\mathcal{F}}$ $\newcommand{\Xx}{\mathcal{X}}$ $\newcommand{\Mm}{\mathcal{M}}$ $\newcommand{\Ii}{\mathcal{I}}$ $\newcommand{\Dd}{\mathcal{D}}$ $\newcommand{\Ll}{\mathcal{L}}$ $\newcommand{\Tt}{\mathcal{T}}$ $\newcommand{\si}{\sigma}$ $\newcommand{\al}{\alpha}$ $\newcommand{\la}{\lambda}$ $\newcommand{\ga}{\gamma}$ $\newcommand{\Ga}{\Gamma}$ $\newcommand{\La}{\Lambda}$ $\newcommand{\si}{\sigma}$ $\newcommand{\Si}{\Sigma}$ $\newcommand{\be}{\beta}$ $\newcommand{\de}{\delta}$ $\newcommand{\De}{\Delta}$ $\newcommand{\phi}{\varphi}$ $\newcommand{\th}{\theta}$ $\newcommand{\om}{\omega}$ $\newcommand{\Om}{\Omega}$
This tour explores the Isomap algorithm for manifold learning.
The <http://waldron.stanford.edu/~isomap/ Isomap> algorithm is introduced in
A Global Geometric Framework for Nonlinear Dimensionality Reduction, J. B. Tenenbaum, V. de Silva and J. C. Langford, Science 290 (5500): 2319-2323, 22 December 2000.
addpath('toolbox_signal')
addpath('toolbox_general')
addpath('toolbox_graph')
addpath('solutions/shapes_7_isomap')
Manifold learning consist in approximating the parameterization of a manifold represented as a point cloud.
First we load a simple 3D point cloud, the famous Swiss Roll.
Number of points.
n = 1000;
Random position on the parameteric domain.
x = rand(2,n);
Mapping on the manifold.
v = 3*pi/2 * (.1 + 2*x(1,:));
X = zeros(3,n);
X(2,:) = 20 * x(2,:);
X(1,:) = - cos( v ) .* v;
X(3,:) = sin( v ) .* v;
Parameter for display.
ms = 50;
lw = 1.5;
v1 = -15; v2 = 20;
Display the point cloud.
clf;
scatter3(X(1,:),X(2,:),X(3,:),ms,v, 'filled');
colormap jet(256);
view(v1,v2); axis('equal'); axis('off');
Compute the pairwise Euclidean distance matrix.
D1 = repmat(sum(X.^2,1),n,1);
D1 = sqrt(D1 + D1' - 2*X'*X);
Number of NN for the graph.
k = 6;
Compute the k-NN connectivity.
[DNN,NN] = sort(D1);
NN = NN(2:k+1,:);
DNN = DNN(2:k+1,:);
Adjacency matrix, and weighted adjacency.
B = repmat(1:n, [k 1]);
A = sparse(B(:), NN(:), ones(k*n,1));
Weighted adjacency (the metric on the graph).
W = sparse(B(:), NN(:), DNN(:));
Display the graph.
options.lw = lw;
options.ps = 0.01;
clf; hold on;
scatter3(X(1,:),X(2,:),X(3,:),ms,v, 'filled');
plot_graph(A, X, options);
colormap jet(256);
view(v1,v2); axis('equal'); axis('off');
zoom(.8);
A simple algorithm to compute the geodesic distances between all pairs of points on a graph is Floyd iterative algorithm. Its complexity is |O(n^3)| where |n| is the number of points. It is thus quite slow for sparse graph, where Dijkstra runs in |O(log(n)*n^2)|.
Floyd algorithm iterates the following update rule, for |k=1,...,n|
|D(i,j) <- min(D(i,j), D(i,k)+D(k,j)|,
with the initialization |D(i,j)=W(i,j)| if |W(i,j)>0|, and |D(i,j)=Inf| if |W(i,j)=0|.
Make the graph symmetric.
D = full(W);
D = (D+D')/2;
Initialize the matrix.
D(D==0) = Inf;
Add connexion between a point and itself.
D = D - diag(diag(D));
Exercise 1
Implement the Floyd algorithm to compute the full distance matrix |D|, where |D(i,j)| is the geodesic distance between
exo1()
%% Insert your code here.
Find index of vertices that are not connected to the main manifold.
Iremove = find(D(:,1)==Inf);
Remove Inf remaining values (disconnected comonents).
D(D==Inf) = 0;
Isomap perform the dimensionality reduction by applying multidimensional scaling.
Please refers to the tours on Bending Invariant for detail on Classical MDS (strain minimization).
Exercise 2
Perform classical MDS to compute the 2D flattening. entered kernel iagonalization lot graph
exo2()