Important: Please read the installation page for details about how to install the toolboxes. $\newcommand{\dotp}[2]{\langle #1, #2 \rangle}$ $\newcommand{\enscond}[2]{\lbrace #1, #2 \rbrace}$ $\newcommand{\pd}[2]{ \frac{ \partial #1}{\partial #2} }$ $\newcommand{\umin}[1]{\underset{#1}{\min}\;}$ $\newcommand{\umax}[1]{\underset{#1}{\max}\;}$ $\newcommand{\umin}[1]{\underset{#1}{\min}\;}$ $\newcommand{\uargmin}[1]{\underset{#1}{argmin}\;}$ $\newcommand{\norm}[1]{\|#1\|}$ $\newcommand{\abs}[1]{\left|#1\right|}$ $\newcommand{\choice}[1]{ \left\{ \begin{array}{l} #1 \end{array} \right. }$ $\newcommand{\pa}[1]{\left(#1\right)}$ $\newcommand{\diag}[1]{{diag}\left( #1 \right)}$ $\newcommand{\qandq}{\quad\text{and}\quad}$ $\newcommand{\qwhereq}{\quad\text{where}\quad}$ $\newcommand{\qifq}{ \quad \text{if} \quad }$ $\newcommand{\qarrq}{ \quad \Longrightarrow \quad }$ $\newcommand{\ZZ}{\mathbb{Z}}$ $\newcommand{\CC}{\mathbb{C}}$ $\newcommand{\RR}{\mathbb{R}}$ $\newcommand{\EE}{\mathbb{E}}$ $\newcommand{\Zz}{\mathcal{Z}}$ $\newcommand{\Ww}{\mathcal{W}}$ $\newcommand{\Vv}{\mathcal{V}}$ $\newcommand{\Nn}{\mathcal{N}}$ $\newcommand{\NN}{\mathcal{N}}$ $\newcommand{\Hh}{\mathcal{H}}$ $\newcommand{\Bb}{\mathcal{B}}$ $\newcommand{\Ee}{\mathcal{E}}$ $\newcommand{\Cc}{\mathcal{C}}$ $\newcommand{\Gg}{\mathcal{G}}$ $\newcommand{\Ss}{\mathcal{S}}$ $\newcommand{\Pp}{\mathcal{P}}$ $\newcommand{\Ff}{\mathcal{F}}$ $\newcommand{\Xx}{\mathcal{X}}$ $\newcommand{\Mm}{\mathcal{M}}$ $\newcommand{\Ii}{\mathcal{I}}$ $\newcommand{\Dd}{\mathcal{D}}$ $\newcommand{\Ll}{\mathcal{L}}$ $\newcommand{\Tt}{\mathcal{T}}$ $\newcommand{\si}{\sigma}$ $\newcommand{\al}{\alpha}$ $\newcommand{\la}{\lambda}$ $\newcommand{\ga}{\gamma}$ $\newcommand{\Ga}{\Gamma}$ $\newcommand{\La}{\Lambda}$ $\newcommand{\si}{\sigma}$ $\newcommand{\Si}{\Sigma}$ $\newcommand{\be}{\beta}$ $\newcommand{\de}{\delta}$ $\newcommand{\De}{\Delta}$ $\newcommand{\phi}{\varphi}$ $\newcommand{\th}{\theta}$ $\newcommand{\om}{\omega}$ $\newcommand{\Om}{\Omega}$
This numerical tour explore local Fourier analysis of sounds, and its application to source separation from stereo measurements.
from __future__ import division
import numpy as np
import scipy as scp
import pylab as pyl
import matplotlib.pyplot as plt
from nt_toolbox.general import *
from nt_toolbox.signal import *
import warnings
warnings.filterwarnings('ignore')
%matplotlib inline
%load_ext autoreload
%autoreload 2
We load 3 sounds and simulate a stero recording by performing a linear blending of the sounds.
Sound loading.
from nt_toolbox.load_sound import *
n = 1024*16
s = 3 #number of sounds
p = 2 #number of micros
x = np.zeros([n,3])
x[:,0] = load_sound("nt_toolbox/data/bird.wav",n)
x[:,1] = load_sound("nt_toolbox/data/female.wav",n)
x[:,2] = load_sound("nt_toolbox/data/male.wav",n)
Normalize the energy of the signals.
x = x/np.tile(np.std(x,0),(n,1))
We mix the sound using a $2\mathrm{x}3$ transformation matrix. Here the direction are well-spaced, but you can try with more complicated mixing matrices.
Compute the mixing matrix
theta = np.linspace(0, np.pi, s + 1)[:-1]
theta[0] = .2
M = np.vstack((np.cos(theta), np.sin(theta)))
Compute the mixed sources.
y = np.dot(x,np.transpose(M))
Display of the sounds and their mix.
plt.figure(figsize = (10,10))
for i in range(s):
plt.subplot(s, 1, i+1)
plt.plot(x[:, i])
plt.xlim(0,n)
plt.title("Source #%i" %(i+1))
Display of the micro output.
plt.figure(figsize = (10,7))
for i in range(p):
plt.subplot(p, 1, i+1)
plt.plot(y[:, i])
plt.xlim(0,n)
plt.title("Micro #%i" %(i+1))
In order to perform the separation, one performs a local Fourier analysis of the sound. The hope is that the sources will be well-separated over the Fourier domain because the sources are sparse after a STFT.
First set up parameters for the STFT.
w = 128 #size of the window
q = w//4 #overlap of the window
Compute the STFT of the sources.
from nt_toolbox.perform_stft import *
from nt_toolbox.plot_spectrogram import *
X = np.zeros([w,4*w+1,s])
Y = np.zeros([w,4*w+1,p])
for i in range(s):
X[:,:,i] = perform_stft(x[:,i],w,q,n)
plt.figure(figsize = (15,10))
plot_spectrogram(X[:,:,i],"Source #%i" %(i+1))