Important: Please read the installation page for details about how to install the toolboxes. $\newcommand{\dotp}[2]{\langle #1, #2 \rangle}$ $\newcommand{\enscond}[2]{\lbrace #1, #2 \rbrace}$ $\newcommand{\pd}[2]{ \frac{ \partial #1}{\partial #2} }$ $\newcommand{\umin}[1]{\underset{#1}{\min}\;}$ $\newcommand{\umax}[1]{\underset{#1}{\max}\;}$ $\newcommand{\umin}[1]{\underset{#1}{\min}\;}$ $\newcommand{\uargmin}[1]{\underset{#1}{argmin}\;}$ $\newcommand{\norm}[1]{\|#1\|}$ $\newcommand{\abs}[1]{\left|#1\right|}$ $\newcommand{\choice}[1]{ \left\{ \begin{array}{l} #1 \end{array} \right. }$ $\newcommand{\pa}[1]{\left(#1\right)}$ $\newcommand{\diag}[1]{{diag}\left( #1 \right)}$ $\newcommand{\qandq}{\quad\text{and}\quad}$ $\newcommand{\qwhereq}{\quad\text{where}\quad}$ $\newcommand{\qifq}{ \quad \text{if} \quad }$ $\newcommand{\qarrq}{ \quad \Longrightarrow \quad }$ $\newcommand{\ZZ}{\mathbb{Z}}$ $\newcommand{\CC}{\mathbb{C}}$ $\newcommand{\RR}{\mathbb{R}}$ $\newcommand{\EE}{\mathbb{E}}$ $\newcommand{\Zz}{\mathcal{Z}}$ $\newcommand{\Ww}{\mathcal{W}}$ $\newcommand{\Vv}{\mathcal{V}}$ $\newcommand{\Nn}{\mathcal{N}}$ $\newcommand{\NN}{\mathcal{N}}$ $\newcommand{\Hh}{\mathcal{H}}$ $\newcommand{\Bb}{\mathcal{B}}$ $\newcommand{\Ee}{\mathcal{E}}$ $\newcommand{\Cc}{\mathcal{C}}$ $\newcommand{\Gg}{\mathcal{G}}$ $\newcommand{\Ss}{\mathcal{S}}$ $\newcommand{\Pp}{\mathcal{P}}$ $\newcommand{\Ff}{\mathcal{F}}$ $\newcommand{\Xx}{\mathcal{X}}$ $\newcommand{\Mm}{\mathcal{M}}$ $\newcommand{\Ii}{\mathcal{I}}$ $\newcommand{\Dd}{\mathcal{D}}$ $\newcommand{\Ll}{\mathcal{L}}$ $\newcommand{\Tt}{\mathcal{T}}$ $\newcommand{\si}{\sigma}$ $\newcommand{\al}{\alpha}$ $\newcommand{\la}{\lambda}$ $\newcommand{\ga}{\gamma}$ $\newcommand{\Ga}{\Gamma}$ $\newcommand{\La}{\Lambda}$ $\newcommand{\si}{\sigma}$ $\newcommand{\Si}{\Sigma}$ $\newcommand{\be}{\beta}$ $\newcommand{\de}{\delta}$ $\newcommand{\De}{\Delta}$ $\newcommand{\phi}{\varphi}$ $\newcommand{\th}{\theta}$ $\newcommand{\om}{\omega}$ $\newcommand{\Om}{\Omega}$
This tour explores the Isomap algorithm for manifold learning.
The <http://waldron.stanford.edu/~isomap/ Isomap> algorithm is introduced in
A Global Geometric Framework for Nonlinear Dimensionality Reduction, J. B. Tenenbaum, V. de Silva and J. C. Langford, Science 290 (5500): 2319-2323, 22 December 2000.
options(warn=-1) # turns off warnings, to turn on: "options(warn=0)"
library(imager)
library(png)
for (f in list.files(path="nt_toolbox/toolbox_general/", pattern="*.R")) {
source(paste("nt_toolbox/toolbox_general/", f, sep=""))
}
for (f in list.files(path="nt_toolbox/toolbox_signal/", pattern="*.R")) {
source(paste("nt_toolbox/toolbox_signal/", f, sep=""))
}
options(repr.plot.width=6, repr.plot.height=5)
Manifold learning consist in approximating the parameterization of a manifold represented as a point cloud.
First we load a simple 3D point cloud, the famous Swiss Roll.
Number of points.
n <- 1000
Random position on the parameteric domain.
x <- array(runif(2*n), c(2,n))
Mapping on the manifold.
v <- 3*pi/2*(.1 + 2*x[1,])
X <- array(0, c(3,n))
X[2,] <- 20*x[2,]
X[1,] <- - cos(v)*v
X[3,] <- sin(v)*v
Parameter for display.
ms <- 200
el <- 20; az <- -110
Display the point cloud.
library(scatterplot3d)
color_vec <- rev(rainbow(100))
color_function <- function(x, y, z){
idx <- round( x**2 + z**2 ) + 1
return(color_vec[idx])
}
#swiss roll
scatterplot3d(X[1,], X[2,], X[3,], axis=F, grid=F, box=F, type="p", pch=19, color=color_function(X[1,], X[2,], X[3,]))
Compute the pairwise Euclidean distance matrix.
D1 <- array( rep(apply(X**2, 2, sum), n), c(n,n) )
D1 <- sqrt(pmax(D1 + t(D1) - 2*t(X)%*%X, 0))
Number of NN for the graph.
k <- 6
Compute the k-NN connectivity.
DNN <- t( apply( D1, 1, function(l){return(l[order(l)])} ) )
NN <- t( apply( D1, 1, order) )
NN <- NN[,2:(k+1)]
DNN <- DNN[,2:(k+1)]
Adjacency matrix, and weighted adjacency.
B <- t(array(rep(1:n,k), c(n, k)))
I <- as.vector(B) ; J <- as.vector(t(NN))
A <- array(0, c(n,n))
for (idx in 1:(k*n)){ A[I[idx], J[idx]] <- 1}
Weighted adjacency (the metric on the graph).
W <- array(0, c(n,n))
DNN_vector <- as.vector(t(DNN))
for (idx in 1:(k*n)){ W[I[idx], J[idx]] <- DNN_vector[idx]}
Display the graph.
color_vec <- rev(rainbow(100))
color_function <- function(x, y, z){
idx <- round( x**2 + z**2 ) + 1
return(color_vec[idx])
}
#swiss roll
s3d <- scatterplot3d(X[1,], X[2,], X[3,], axis=F, grid=F, box=F, type="p", pch=19, color=color_function(X[1,], X[2,], X[3,]))
#graph
xx <- array(0, c(2, k*n)) ; xx[1,] <- X[1,I] ; xx[2,] <- X[1,J]
yy <- array(0, c(2, k*n)) ; yy[1,] <- X[2,I] ; yy[2,] <- X[2,J]
zz <- array(0, c(2, k*n)) ; zz[1,] <- X[3,I] ; zz[2,] <- X[3,J]
for (i in 1:length(I)){
s3d$points3d(xx[,i], yy[,i], zz[,i], type="l", lw=1.5)
}
A simple algorithm to compute the geodesic distances between all pairs of points on a graph is Floyd iterative algorithm. Its complexity is $\mathcal O(n^3)$ where $n$ is the number of points. It is thus quite slow for sparse graph, where Dijkstra runs in $\mathcal O(n^2\log(n))$.
Floyd algorithm iterates the following update rule, for $k=1,\dots,n$
$D(i,j) \leftarrow \min(D(i,j), D(i,k)+D(k,j))$,
with the initialization $D(i,j)=W(i,j)$ if $W(i,j)>0$, and $D(i,j)=Inf$ if $W(i,j)=0$.
Make the graph symmetric.
D <- W
D <- (D + t(D))/2.
Initialize the matrix.
D[D == 0] <- Inf
Add connexion between a point and itself.
diag(D) <- Inf
D[is.nan(D)] <- Inf
Exercise 1
Implement the Floyd algorithm to compute the full distance matrix $D$, where $D(i,j)$ is the geodesic distance between
source("nt_solutions/shapes_7_isomap/exo1.R")
## Insert your code here.
Find index of vertices that are not connected to the main manifold.
Iremove <- (D[,1] == Inf)
Remove Inf remaining values (disconnected components).
D[D == Inf] <- 0
Isomap perform the dimensionality reduction by applying multidimensional scaling.
Please refers to the tours on Bending Invariant for detail on Classical MDS (strain minimization).
Exercise 2
Perform classical MDS to compute the 2D flattening.
source("nt_solutions/shapes_7_isomap/exo2.R")