Author: Helvecio B. Leal Neto & Alan J. P. Calheiros
National Institute for Space Research - Brazil - (2021)
This notebook is designed for viewing the tracking results of the storm/precipitation tracking algorithm beta version. The results presented here refer to the tracking of clusters via radar data provided by the GoAmazon project, for the following periods:
Start: 2014-09-07 00:00:00
End: 2014-09-09 00:00:00
The tracking threshold is:
Minimum size threshold per cluster:
%load_ext autoreload
%autoreload 2
import sys
sys.path.append("../")
import stanalyzer as sta
import pandas as pd
import geopandas as gpd
import numpy as np
from shapely import wkt
import matplotlib.pyplot as plt # standard graphics library
from matplotlib.colors import LinearSegmentedColormap
import gzip
import netCDF4
import cartopy.io.img_tiles as cimgt
import cartopy.crs as ccrs # cartographic coordinate reference system
import io
from urllib.request import urlopen, Request
from PIL import Image
from math import floor
from matplotlib import patheffects
VAR = 'DBZc'
LEVEL = 5
CPT = sta.loadCPT('../stanalyzer/cpt/humidity.cpt')
CMAP = LinearSegmentedColormap('cpt', CPT)
VMIN = 0
VMAX = 65
pd.read_csv
<function pandas.io.parsers.readers.read_csv(filepath_or_buffer: 'FilePathOrBuffer', sep=<no_default>, delimiter=None, header='infer', names=<no_default>, index_col=None, usecols=None, squeeze=False, prefix=<no_default>, mangle_dupe_cols=True, dtype: 'DtypeArg | None' = None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, skipfooter=0, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=False, infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, cache_dates=True, iterator=False, chunksize=None, compression='infer', thousands=None, decimal: 'str' = '.', lineterminator=None, quotechar='"', quoting=0, doublequote=True, escapechar=None, comment=None, encoding=None, encoding_errors: 'str | None' = 'strict', dialect=None, error_bad_lines=None, warn_bad_lines=None, on_bad_lines=None, delim_whitespace=False, low_memory=True, memory_map=False, float_precision=None, storage_options: 'StorageOptions' = None)>
pd.read_pickle
<function pandas.io.pickle.read_pickle(filepath_or_buffer: Union[ForwardRef('PathLike[str]'), str, IO[~AnyStr], io.RawIOBase, io.BufferedIOBase, io.TextIOBase, _io.TextIOWrapper, mmap.mmap], compression: Union[str, Dict[str, Any], NoneType] = 'infer', storage_options: Union[Dict[str, Any], NoneType] = None)>
track_frame = sta.read_file('../output/tracking_compressed.pkl')
File not found or path parameter is incorrect. File not found or path parameter is incorrect.
track_frame.nc_file
Fam_0 0 ../output/data/sbmn_cappi_20140907_0000.nc.gz 10 ../output/data/sbmn_cappi_20140907_0012.nc.gz Fam_1 1 ../output/data/sbmn_cappi_20140907_0000.nc.gz 11 ../output/data/sbmn_cappi_20140907_0012.nc.gz Fam_10 20 ../output/data/sbmn_cappi_20140907_0024.nc.gz ... Fam_97 533 ../output/data/sbmn_cappi_20140907_1900.nc.gz 548 ../output/data/sbmn_cappi_20140907_1912.nc.gz 566 ../output/data/sbmn_cappi_20140907_1924.nc.gz Fam_98 538 ../output/data/sbmn_cappi_20140907_1900.nc.gz 554 ../output/data/sbmn_cappi_20140907_1912.nc.gz Name: nc_file, Length: 1815, dtype: object
## This function returns the duration of events
lifes = sta.life_cicle(track_frame,sort=True)
lifes
uid | times | begin | end | duration | |
---|---|---|---|---|---|
56 | 182 | 51 | 2014-09-08 14:24:00 | 2014-09-09 00:24:00 | 0 days 10:00:00 |
288 | 68 | 31 | 2014-09-07 17:24:00 | 2014-09-07 23:24:00 | 0 days 06:00:00 |
23 | 13 | 30 | 2014-09-07 01:12:00 | 2014-09-07 07:00:00 | 0 days 05:48:00 |
244 | 414 | 28 | 2014-09-08 06:36:00 | 2014-09-08 12:00:00 | 0 days 05:24:00 |
57 | 183 | 27 | 2014-09-08 14:36:00 | 2014-09-08 19:48:00 | 0 days 05:12:00 |
... | ... | ... | ... | ... | ... |
197 | 367 | 2 | 2014-09-09 10:12:00 | 2014-09-09 10:24:00 | 0 days 00:12:00 |
198 | 368 | 2 | 2014-09-09 10:24:00 | 2014-09-09 10:36:00 | 0 days 00:12:00 |
199 | 369 | 2 | 2014-09-09 10:36:00 | 2014-09-09 10:48:00 | 0 days 00:12:00 |
201 | 370 | 2 | 2014-09-09 10:48:00 | 2014-09-09 11:00:00 | 0 days 00:12:00 |
309 | 98 | 2 | 2014-09-07 19:00:00 | 2014-09-07 19:12:00 | 0 days 00:12:00 |
310 rows Ă 5 columns
### Filter by time
TIME_MIN = 0
TIME_MAX = 15
UNIT = 'h'
## Apply filter by time
df_filter1 = sta.time_filter(track_frame,TIME_MIN,TIME_MAX,UNIT)
sta.life_cicle(df_filter1,sort=True)
uid | times | begin | end | duration | |
---|---|---|---|---|---|
56 | 182 | 51 | 2014-09-08 14:24:00 | 2014-09-09 00:24:00 | 0 days 10:00:00 |
287 | 68 | 31 | 2014-09-07 17:24:00 | 2014-09-07 23:24:00 | 0 days 06:00:00 |
23 | 13 | 30 | 2014-09-07 01:12:00 | 2014-09-07 07:00:00 | 0 days 05:48:00 |
243 | 414 | 28 | 2014-09-08 06:36:00 | 2014-09-08 12:00:00 | 0 days 05:24:00 |
72 | 205 | 27 | 2014-09-08 16:00:00 | 2014-09-08 21:12:00 | 0 days 05:12:00 |
... | ... | ... | ... | ... | ... |
196 | 367 | 2 | 2014-09-09 10:12:00 | 2014-09-09 10:24:00 | 0 days 00:12:00 |
197 | 368 | 2 | 2014-09-09 10:24:00 | 2014-09-09 10:36:00 | 0 days 00:12:00 |
198 | 369 | 2 | 2014-09-09 10:36:00 | 2014-09-09 10:48:00 | 0 days 00:12:00 |
200 | 370 | 2 | 2014-09-09 10:48:00 | 2014-09-09 11:00:00 | 0 days 00:12:00 |
308 | 98 | 2 | 2014-09-07 19:00:00 | 2014-09-07 19:12:00 | 0 days 00:12:00 |
309 rows Ă 5 columns
fam_test = df_filter1.query('uid == 118')
fam_test.head()
timestamp | time | uid | id_t | lat | lon | p0 | p1 | size_20 | mean_ref_20 | ... | trajectory | vector_20 | vector_35 | vector_40 | dsize_20 | dmean_ref_20 | dtotal_size_35 | dmean_total_ref_35 | dtotal_size_40 | dmean_total_ref_40 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fam_118 | 601 | 2014-09-07 19:48:00 | 99 | 118 | 23 | -3.795664 | -60.171463 | 110.0 | 84.0 | 115.0 | 42.540183 | ... | LINESTRING (-59.7392578125 -4.065142154693604,... | LINESTRING (-60.13545227050781 -3.795670270919... | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | NaN | NaN | NaN | NaN | NaN | NaN |
743 | 2014-09-07 22:00:00 | 110 | 118 | 13 | -3.813311 | -60.801670 | 75.0 | 83.0 | 64.0 | 22.195404 | ... | LINESTRING (-60.74765014648438 -3.813354253768... | LINESTRING (-60.74765014648438 -3.813354253768... | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | -51.0 | -20.344779 | NaN | NaN | NaN | NaN | |
790 | 2014-09-07 23:36:00 | 118 | 118 | 5 | -3.740904 | -61.305729 | 47.0 | 87.0 | 80.0 | 22.144835 | ... | LINESTRING (-61.14364242553711 -3.705176830291... | LINESTRING (-61.14364242553711 -3.705176830291... | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | 16.0 | -0.050569 | NaN | NaN | NaN | NaN | |
785 | 2014-09-07 23:24:00 | 117 | 118 | 5 | -3.705177 | -61.143642 | 56.0 | 89.0 | 233.0 | 23.955956 | ... | LINESTRING (-61.08965301513672 -3.723203659057... | LINESTRING (-61.08965301513672 -3.723203659057... | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | 153.0 | 1.811121 | NaN | NaN | NaN | NaN | |
781 | 2014-09-07 23:12:00 | 116 | 118 | 6 | -3.723204 | -61.089653 | 59.0 | 88.0 | 377.0 | 28.503227 | ... | LINESTRING (-61.05364608764648 -3.723242998123... | LINESTRING (-61.05364608764648 -3.723242998123... | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | 144.0 | 4.547272 | NaN | NaN | NaN | NaN |
5 rows Ă 43 columns
def get_cmap(n, name='hsv'):
'''Returns a function that maps each index in 0, 1, ..., n-1 to a distinct
RGB color; the keyword argument name must be a standard mpl colormap name.'''
return plt.cm.get_cmap(name, n)
def open_ncdf(nc_file):
## OPEN RADAR DATA COMPRESS
with gzip.open(nc_file) as gz:
with netCDF4.Dataset('dummy', mode='r', memory=gz.read()) as nc:
data = nc.variables[VAR][0][LEVEL][:].filled()
extent = [nc.variables['lon0'][:].min(),nc.variables['lon0'][:].max(),nc.variables['lat0'][:].min(),nc.variables['lat0'][:].max()]
return data,extent
## Image
def image_spoof(self, tile): # this function pretends not to be a Python script
url = self._image_url(tile) # get the url of the street map API
req = Request(url) # start request
req.add_header('User-agent','Anaconda 3') # add user agent to request
fh = urlopen(req)
im_data = io.BytesIO(fh.read()) # get image
fh.close() # close url
img = Image.open(im_data) # open image with PIL
img = img.convert(self.desired_tile_form) # set image format
return img, self.tileextent(tile), 'lower' # reformat for cartopy
## Scale bar
def scale_bar(ax, proj, length, location=(0.5, 0.05), linewidth=3,
units='km', m_per_unit=1000):
# find lat/lon center to find best UTM zone
x0, x1, y0, y1 = ax.get_extent(proj.as_geodetic())
# Projection in metres
utm = ccrs.UTM(utm_from_lon((x0+x1)/2))
# Get the extent of the plotted area in coordinates in metres
x0, x1, y0, y1 = ax.get_extent(utm)
# Turn the specified scalebar location into coordinates in metres
sbcx, sbcy = x0 + (x1 - x0) * location[0], y0 + (y1 - y0) * location[1]
# Generate the x coordinate for the ends of the scalebar
bar_xs = [sbcx - length * m_per_unit/2, sbcx + length * m_per_unit/2]
# buffer for scalebar
buffer = [patheffects.withStroke(linewidth=5, foreground="w")]
# Plot the scalebar with buffer
ax.plot(bar_xs, [sbcy, sbcy], transform=utm, color='k',
linewidth=linewidth, path_effects=buffer)
# buffer for text
buffer = [patheffects.withStroke(linewidth=3, foreground="w")]
# Plot the scalebar label
t0 = ax.text(sbcx, sbcy, str(length) + ' ' + units, transform=utm,
horizontalalignment='center', verticalalignment='bottom',
path_effects=buffer, fontsize=14, zorder=4)
left = x0+(x1-x0)*(0.9)
# Plot the N arrow
t1 = ax.text(left, sbcy, u'\u25B2\nN', transform=utm,
horizontalalignment='center', verticalalignment='bottom',
path_effects=buffer, fontsize=14, zorder=4)
# Plot the scalebar without buffer, in case covered by text buffer
ax.plot(bar_xs, [sbcy, sbcy], transform=utm, color='k',
linewidth=linewidth, zorder=6)
def utm_from_lon(lon):
return floor( ( lon + 180 ) / 6) + 1
def plot(dframe,t = 0):
## GET TIMESTAMP LIST
time_list = [np.unique(sorted(dframe.time))[t]]
locked_by_time = dframe.query('time <= @time_list')
geo_cols = []
list_cols = locked_by_time.columns.to_list()
tresholds = []
for c in list_cols:
if 'geom_' in c or 'line' in c or 'traj' in c or 'vect' in c:
geo_cols.append(c)
if 'geom_' in c and 'geom_i' not in c:
tresholds.append(int(c[-2:]))
geo_cols = sorted(geo_cols)
no_geo_cols = [item for item in list_cols if item not in geo_cols]
### CREATE GEODATAFRAME
geo_frame = gpd.GeoDataFrame(locked_by_time[no_geo_cols])
### OPEN MATRIX
nc_file = locked_by_time.loc[locked_by_time['time'] == time_list[-1]]['nc_file'].unique()[0]
data,extent = open_ncdf(nc_file)
## FILTER
data[data <= 0 ] = np.nan
## FIGURE
cimgt.Stamen.get_image = image_spoof # reformat web request for street map spoofing
osm_img = cimgt.Stamen('terrain-background'); # spoofed, downloaded street map
plt.figure(figsize=(10,10),dpi=100)
ax = plt.axes(projection = osm_img.crs)
ax.set_extent(extent)
### BACKGROUND
zoom = 1
scale = np.ceil(-np.sqrt(2)*np.log(np.divide(zoom,350.0))) # empirical solve for scale based on zoom
scale = (scale<20) and scale or 19 # scale cannot be larger than 19
ax.add_image(osm_img, int(scale)) # add OSM with zoom specification
color_range = ['red','C1','C2','C3','C4','C5']
## Geometries
for g in range(len(geo_cols)):
## Plot Boundary
if 'geom_' in geo_cols[g] and 'geom_i' not in geo_cols[g]:
last_time = time_list[-1]
last_series = locked_by_time.query('time == @last_time')[geo_cols[g]].apply(wkt.loads)
geo_frame['geometry'] = last_series
geo_frame.exterior.plot(ax=ax,color=color_range[g],linewidth=1,label=geo_cols[g],transform = ccrs.PlateCarree())
## Plot Trajectory
if 'traj' in geo_cols[g]:
lock_uids = locked_by_time.query('time == @last_time').uid.values.tolist()
traject = locked_by_time.query('uid == @lock_uids')[geo_cols[g]].apply(wkt.loads)
geo_frame['geometry'] = traject
geo_frame.plot(ax=ax,color='black',label=geo_cols[g],transform = ccrs.PlateCarree())
# # Plot vectores
# if 'vect' in geo_cols[g]:
# lock_uids = locked_by_time.query('time == @last_time').uid.values.tolist()
# traject = locked_by_time.query('uid == @lock_uids')[geo_cols[g]].apply(wkt.loads)
# geo_frame['geometry'] = traject
# geo_frame.plot(ax=ax,color='gray',label=geo_cols[g],transform = ccrs.PlateCarree())
### Plot INFO
buffer = [patheffects.withStroke(linewidth=3, foreground="w")]
transform = ccrs.PlateCarree()._as_mpl_transform(ax)
for i,row in locked_by_time.query('time == @last_time').iterrows():
print(row.p0,row.p1,row.uid)
ax.annotate(s=' UID \n'+str(row.uid),
xy=(float(row.lon),float(row.lat)),
xycoords=transform, weight='bold', size=10, path_effects=buffer)
#### PLOT DATA
cs = ax.contourf(data, cmap = CMAP, vmin = VMIN, vmax = VMAX, extent = extent,alpha=0.9, transform = ccrs.PlateCarree())
### LINES LABELS
gl = ax.gridlines( draw_labels=True,
linewidth=1, color='gray', alpha=0.5, linestyle='--') # label all axes
gl.top_labels = False # turn off top label
gl.right_labels = False # turn off right label
## PLOT SCALE BAR
scale_bar(ax, ccrs.Mercator(), 50)
## COLOR BAR
sm = plt.cm.ScalarMappable(cmap=CMAP,norm=plt.Normalize(VMIN,VMAX))
sm._A = []
cbar = plt.colorbar(sm,ax=ax,extend='both',pad=0.05,shrink=0.6,orientation='horizontal')
cbar.set_label('Refletividade (dBZ)')
## LEGEND
ax.legend()
df_filter1.columns
Index(['timestamp', 'time', 'uid', 'id_t', 'lat', 'lon', 'p0', 'p1', 'size_20', 'mean_ref_20', 'max_ref_20', 'angle_20_orig', 'angle_20_cor', 'vel_20_orig', 'vel_20_cor', 'mean_total_ref_35', 'total_size_35', 'n_cluster_35', 'avg_angle_35', 'avg_vel_35', 'mean_total_ref_40', 'total_size_40', 'n_cluster_40', 'avg_angle_40', 'avg_vel_40', 'status', 'delta_t', 'nc_file', 'cluster_file', 'geom_intersect', 'geom_20', 'geom_35', 'geom_40', 'trajectory', 'vector_20', 'vector_35', 'vector_40', 'dsize_20', 'dmean_ref_20', 'dtotal_size_35', 'dmean_total_ref_35', 'dtotal_size_40', 'dmean_total_ref_40', 'geometry'], dtype='object')
df_filter1.query('time == 5')
timestamp | time | uid | id_t | lat | lon | p0 | p1 | size_20 | mean_ref_20 | ... | vector_20 | vector_35 | vector_40 | dsize_20 | dmean_ref_20 | dtotal_size_35 | dmean_total_ref_35 | dtotal_size_40 | dmean_total_ref_40 | geometry | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fam_10 | 41 | 2014-09-07 01:00:00 | 5 | 10 | 10 | -3.651080 | -58.677219 | 193.0 | 92.0 | 56.0 | 30.746202 | ... | LINESTRING (-58.62321090698242 -3.651007175445... | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | -16.0 | -8.705933 | -12.0 | -7.147202 | NaN | NaN | POLYGON ((-58.65909 -3.74088, -58.65909 -3.740... |
Fam_2 | 43 | 2014-09-07 01:00:00 | 5 | 2 | 13 | -3.346188 | -59.163548 | 166.0 | 109.0 | 599.0 | 27.761354 | ... | LINESTRING (-59.07354736328125 -3.364077091217... | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | 80.0 | -0.120604 | NaN | NaN | NaN | NaN | POLYGON ((-58.98330 -3.61551, -58.98330 -3.615... |
Fam_3 | 42 | 2014-09-07 01:00:00 | 5 | 3 | 12 | -3.562072 | -59.685394 | 137.0 | 97.0 | 125.0 | 41.594100 | ... | LINESTRING (-59.63138961791992 -3.562054157257... | LINESTRING (-59.64939880371094 -3.544094324111... | LINESTRING (-59.64939117431641 -3.562060356140... | -3.0 | -0.742426 | -17.0 | 0.312405 | -16.0 | 0.732436 | POLYGON ((-59.72136 -3.66988, -59.72136 -3.669... |
Fam_4 | 44 | 2014-09-07 01:00:00 | 5 | 4 | 24 | -2.752866 | -61.286469 | 48.0 | 142.0 | 47.0 | 24.270070 | ... | LINESTRING (-61.14260864257812 -2.788957357406... | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | -73.0 | -5.133102 | NaN | NaN | NaN | NaN | POLYGON ((-61.25061 -2.86070, -61.25061 -2.860... |
Fam_6 | 46 | 2014-09-07 01:00:00 | 5 | 6 | 28 | -2.520052 | -59.775608 | 132.0 | 155.0 | 101.0 | 38.155227 | ... | LINESTRING (-59.75762557983398 -2.520048618316... | LINESTRING (-59.72165298461914 -2.555973052978... | LINESTRING (-59.72165298461914 -2.555973052978... | -12.0 | -3.200698 | -20.0 | -2.084470 | -22.0 | -1.507583 | POLYGON ((-59.81156 -2.62786, -59.81156 -2.627... |
Fam_7 | 47 | 2014-09-07 01:00:00 | 5 | 7 | 30 | -2.376302 | -60.297089 | 103.0 | 163.0 | 152.0 | 36.072795 | ... | LINESTRING (-60.22516632080078 -2.376318693161... | LINESTRING (-60.24314117431641 -2.358348608016... | GEOMETRYCOLLECTION EMPTY | 21.0 | -3.083527 | -24.0 | -0.832133 | -13.0 | -0.991783 | POLYGON ((-60.31511 -2.53799, -60.31511 -2.537... |
6 rows Ă 44 columns
plot(df_filter1,5)
193.0 92.0 10 166.0 109.0 2 137.0 97.0 3 48.0 142.0 4 132.0 155.0 6 103.0 163.0 7
/home/helvecioneto/miniconda3/envs/stanalyzer/lib/python3.7/site-packages/ipykernel_launcher.py:75: MatplotlibDeprecationWarning: The 's' parameter of annotate() has been renamed 'text' since Matplotlib 3.3; support for the old name will be dropped two minor releases later. /home/helvecioneto/miniconda3/envs/stanalyzer/lib/python3.7/site-packages/cartopy/mpl/geoaxes.py:762: UserWarning: Approximating coordinate system <cartopy._crs.Geodetic object at 0x7f12194360b0> with the PlateCarree projection.
import plotly.express as px
import plotly.graph_objects as go
geo_cols = []
for c in df_filter1.columns:
if 'geom_' in c or 'line' in c or 'traj' in c or 'vect' in c:
geo_cols.append(c)
no_geo_cols = [item for item in df_filter1.columns if item not in geo_cols]
geo_df = gpd.GeoDataFrame(df_filter1)
geo_df['geometry'] = df_filter1['geom_20'].apply(wkt.loads)
geo_df.query('time <= 5')
timestamp | time | uid | id_t | lat | lon | p0 | p1 | size_20 | mean_ref_20 | ... | vector_20 | vector_35 | vector_40 | dsize_20 | dmean_ref_20 | dtotal_size_35 | dmean_total_ref_35 | dtotal_size_40 | dmean_total_ref_40 | geometry | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fam_0 | 0 | 2014-09-07 00:00:00 | 0 | 0 | 2 | -3.866008 | -58.262753 | 216.0 | 80.0 | 66.0 | 35.540233 | ... | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | NaN | NaN | NaN | NaN | NaN | NaN | POLYGON ((-58.37060 -3.97398, -58.37060 -3.973... |
10 | 2014-09-07 00:12:00 | 1 | 0 | 3 | -3.884098 | -58.334747 | 212.0 | 79.0 | 34.0 | 26.850009 | ... | LINESTRING (-58.26275253295898 -3.866008281707... | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | -32.0 | -8.690224 | NaN | NaN | NaN | NaN | POLYGON ((-58.28066 -3.91993, -58.28066 -3.919... | |
Fam_1 | 1 | 2014-09-07 00:00:00 | 0 | 1 | 5 | -3.759429 | -59.199203 | 164.0 | 86.0 | 75.0 | 39.058735 | ... | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | NaN | NaN | NaN | NaN | NaN | NaN | POLYGON ((-59.25313 -3.86727, -59.25313 -3.867... |
11 | 2014-09-07 00:12:00 | 1 | 1 | 4 | -3.795402 | -59.253189 | 161.0 | 84.0 | 41.0 | 37.308171 | ... | LINESTRING (-59.19920349121094 -3.759428739547... | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | -34.0 | -1.750565 | -9.0 | -2.209392 | -3.0 | -3.066082 | POLYGON ((-59.30714 -3.88527, -59.30714 -3.885... | |
Fam_10 | 20 | 2014-09-07 00:24:00 | 2 | 10 | 8 | -3.668817 | -58.515167 | 202.0 | 91.0 | 82.0 | 38.440909 | ... | LINESTRING (-58.40708923339844 -3.704577922821... | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | NaN | NaN | NaN | NaN | NaN | NaN | POLYGON ((-58.55131 -3.57905, -58.51531 -3.579... |
28 | 2014-09-07 00:36:00 | 3 | 10 | 5 | -3.668921 | -58.587177 | 198.0 | 91.0 | 93.0 | 39.537189 | ... | LINESTRING (-58.51516723632812 -3.668816804885... | LINESTRING (-58.47916030883789 -3.668762445449... | GEOMETRYCOLLECTION EMPTY | 11.0 | 1.096280 | -3.0 | 2.149453 | 5.0 | 1.177330 | POLYGON ((-58.56901 -3.77668, -58.56901 -3.776... | |
35 | 2014-09-07 00:48:00 | 4 | 10 | 8 | -3.651007 | -58.623211 | 196.0 | 92.0 | 72.0 | 39.452136 | ... | LINESTRING (-58.58717727661133 -3.668921470642... | LINESTRING (-58.5692024230957 -3.6509313583374... | LINESTRING (-58.56917572021484 -3.668895721435... | -21.0 | -0.085053 | -12.0 | 1.007357 | -8.0 | 0.990272 | POLYGON ((-58.67707 -3.75887, -58.67707 -3.758... | |
41 | 2014-09-07 01:00:00 | 5 | 10 | 10 | -3.651080 | -58.677219 | 193.0 | 92.0 | 56.0 | 30.746202 | ... | LINESTRING (-58.62321090698242 -3.651007175445... | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | -16.0 | -8.705933 | -12.0 | -7.147202 | NaN | NaN | POLYGON ((-58.65909 -3.74088, -58.65909 -3.740... | |
Fam_2 | 2 | 2014-09-07 00:00:00 | 0 | 2 | 6 | -3.489554 | -58.803436 | 186.0 | 101.0 | 422.0 | 38.215296 | ... | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | NaN | NaN | NaN | NaN | NaN | NaN | POLYGON ((-58.98303 -3.86702, -58.98303 -3.867... |
13 | 2014-09-07 00:12:00 | 1 | 2 | 10 | -3.417735 | -58.839520 | 184.0 | 105.0 | 396.0 | 38.074262 | ... | LINESTRING (-58.80343627929688 -3.489553928375... | LINESTRING (-58.73136901855469 -3.543361186981... | LINESTRING (-58.80339431762695 -3.525484085083... | -26.0 | -0.141034 | -27.0 | 0.521226 | -18.0 | 1.282434 | POLYGON ((-58.87525 -3.65132, -58.87525 -3.651... | |
22 | 2014-09-07 00:24:00 | 2 | 2 | 10 | -3.471631 | -58.839458 | 184.0 | 102.0 | 273.0 | 37.208581 | ... | LINESTRING (-58.83951950073242 -3.417735338211... | LINESTRING (-58.76741409301758 -3.507475852966... | LINESTRING (-58.76739120483398 -3.525440931320... | -123.0 | -0.865681 | -53.0 | 0.716820 | -5.0 | -1.379247 | POLYGON ((-58.73111 -3.74097, -58.73111 -3.740... | |
30 | 2014-09-07 00:36:00 | 3 | 2 | 8 | -3.435780 | -58.911495 | 180.0 | 104.0 | 262.0 | 32.964602 | ... | LINESTRING (-58.83945846557617 -3.471630811691... | LINESTRING (-58.83941650390625 -3.507560968399... | LINESTRING (-58.82145690917969 -3.471610069274... | -11.0 | -4.243979 | -17.0 | -3.287830 | -20.0 | -2.113137 | POLYGON ((-59.03736 -3.56166, -59.03736 -3.561... | |
37 | 2014-09-07 00:48:00 | 4 | 2 | 11 | -3.364077 | -59.073547 | 171.0 | 108.0 | 519.0 | 27.881958 | ... | LINESTRING (-58.91149520874023 -3.435779809951... | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | 257.0 | -5.082643 | -27.0 | -5.080233 | NaN | NaN | POLYGON ((-58.78516 -3.70511, -58.78516 -3.705... | |
43 | 2014-09-07 01:00:00 | 5 | 2 | 13 | -3.346188 | -59.163548 | 166.0 | 109.0 | 599.0 | 27.761354 | ... | LINESTRING (-59.07354736328125 -3.364077091217... | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | 80.0 | -0.120604 | NaN | NaN | NaN | NaN | POLYGON ((-58.98330 -3.61551, -58.98330 -3.615... | |
Fam_3 | 3 | 2014-09-07 00:00:00 | 0 | 3 | 8 | -3.454065 | -59.271454 | 160.0 | 103.0 | 281.0 | 38.943956 | ... | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | NaN | NaN | NaN | NaN | NaN | NaN | POLYGON ((-59.19935 -3.57977, -59.19935 -3.579... |
12 | 2014-09-07 00:12:00 | 1 | 3 | 7 | -3.561943 | -59.397377 | 153.0 | 97.0 | 160.0 | 39.939325 | ... | LINESTRING (-59.27145385742188 -3.454065084457... | LINESTRING (-59.34335327148438 -3.597841024398... | LINESTRING (-59.34333801269531 -3.615806818008... | -121.0 | 0.995369 | -2.0 | -1.216769 | 5.0 | -1.881857 | POLYGON ((-59.39727 -3.74160, -59.39727 -3.741... | |
21 | 2014-09-07 00:24:00 | 2 | 3 | 9 | -3.579958 | -59.487373 | 148.0 | 96.0 | 145.0 | 43.008852 | ... | LINESTRING (-59.39737701416016 -3.561942577362... | LINESTRING (-59.43336868286133 -3.579929351806... | LINESTRING (-59.41534805297852 -3.615851163864... | -15.0 | 3.069527 | 1.0 | 2.612514 | 4.0 | 2.505984 | POLYGON ((-59.50529 -3.74166, -59.50529 -3.741... | |
29 | 2014-09-07 00:36:00 | 3 | 3 | 6 | -3.562026 | -59.559387 | 144.0 | 97.0 | 137.0 | 42.024722 | ... | LINESTRING (-59.48737335205078 -3.579958200454... | LINESTRING (-59.52337646484375 -3.579975605010... | LINESTRING (-59.52337646484375 -3.579975605010... | -8.0 | -0.984130 | -7.0 | -0.720139 | -7.0 | -0.536718 | POLYGON ((-59.57742 -3.49017, -59.54142 -3.490... | |
36 | 2014-09-07 00:48:00 | 4 | 3 | 10 | -3.562054 | -59.631390 | 140.0 | 97.0 | 128.0 | 42.336526 | ... | LINESTRING (-59.55938720703125 -3.562025547027... | LINESTRING (-59.5773811340332 -3.5799994468688... | LINESTRING (-59.6134033203125 -3.5261151790618... | -9.0 | 0.311804 | 8.0 | -0.507579 | 10.0 | -0.945654 | POLYGON ((-59.64933 -3.72376, -59.64933 -3.723... | |
42 | 2014-09-07 01:00:00 | 5 | 3 | 12 | -3.562072 | -59.685394 | 137.0 | 97.0 | 125.0 | 41.594100 | ... | LINESTRING (-59.63138961791992 -3.562054157257... | LINESTRING (-59.64939880371094 -3.544094324111... | LINESTRING (-59.64939117431641 -3.562060356140... | -3.0 | -0.742426 | -17.0 | 0.312405 | -16.0 | 0.732436 | POLYGON ((-59.72136 -3.66988, -59.72136 -3.669... | |
Fam_4 | 4 | 2014-09-07 00:00:00 | 0 | 4 | 25 | -2.860910 | -61.052738 | 61.0 | 136.0 | 94.0 | 33.522816 | ... | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | NaN | NaN | NaN | NaN | NaN | NaN | POLYGON ((-61.12475 -2.91473, -61.12475 -2.914... |
14 | 2014-09-07 00:12:00 | 1 | 4 | 20 | -2.752928 | -61.232506 | 51.0 | 142.0 | 87.0 | 30.066929 | ... | LINESTRING (-61.05273818969727 -2.860909938812... | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | -7.0 | -3.455887 | -6.0 | -4.177263 | NaN | NaN | POLYGON ((-61.19667 -2.87872, -61.19667 -2.878... | |
24 | 2014-09-07 00:24:00 | 2 | 4 | 23 | -2.788729 | -61.340473 | 45.0 | 140.0 | 44.0 | 22.569323 | ... | LINESTRING (-61.23250579833984 -2.752928495407... | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | -43.0 | -7.497606 | NaN | NaN | NaN | NaN | POLYGON ((-61.32259 -2.87858, -61.32259 -2.878... | |
32 | 2014-09-07 00:36:00 | 3 | 4 | 14 | -2.770973 | -61.160580 | 55.0 | 141.0 | 250.0 | 38.682485 | ... | LINESTRING (-61.34047317504883 -2.788729429244... | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | 206.0 | 16.113162 | NaN | NaN | NaN | NaN | POLYGON ((-61.17872 -2.91467, -61.17872 -2.914... | |
38 | 2014-09-07 00:48:00 | 4 | 4 | 17 | -2.788957 | -61.142609 | 56.0 | 140.0 | 120.0 | 29.403172 | ... | LINESTRING (-61.16057968139648 -2.770972967147... | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | -130.0 | -9.279313 | -72.0 | -5.012903 | NaN | NaN | POLYGON ((-60.98083 -2.91487, -60.98083 -2.914... | |
44 | 2014-09-07 01:00:00 | 5 | 4 | 24 | -2.752866 | -61.286469 | 48.0 | 142.0 | 47.0 | 24.270070 | ... | LINESTRING (-61.14260864257812 -2.788957357406... | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | -73.0 | -5.133102 | NaN | NaN | NaN | NaN | POLYGON ((-61.25061 -2.86070, -61.25061 -2.860... | |
Fam_5 | 5 | 2014-09-07 00:00:00 | 0 | 5 | 26 | -2.519303 | -61.304192 | 47.0 | 155.0 | 83.0 | 30.758016 | ... | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | NaN | NaN | NaN | NaN | NaN | NaN | POLYGON ((-61.26828 -2.57324, -61.28627 -2.573... |
15 | 2014-09-07 00:12:00 | 1 | 5 | 23 | -2.519194 | -61.394108 | 42.0 | 155.0 | 89.0 | 34.124644 | ... | LINESTRING (-61.30419158935547 -2.519302606582... | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | 6.0 | 3.366628 | 10.0 | 2.121668 | NaN | NaN | POLYGON ((-61.44835 -2.75266, -61.44835 -2.752... | |
25 | 2014-09-07 00:24:00 | 2 | 5 | 25 | -2.555145 | -61.376167 | 43.0 | 153.0 | 59.0 | 33.560090 | ... | LINESTRING (-61.39410781860352 -2.519193649291... | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | -30.0 | -0.564554 | -7.0 | 0.252037 | -4.0 | 1.615381 | POLYGON ((-61.30435 -2.66302, -61.30435 -2.663... | |
Fam_6 | 6 | 2014-09-07 00:00:00 | 0 | 6 | 27 | -2.573832 | -59.433899 | 151.0 | 152.0 | 44.0 | 32.095492 | ... | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | NaN | NaN | NaN | NaN | NaN | NaN | POLYGON ((-59.41587 -2.66365, -59.41587 -2.663... |
16 | 2014-09-07 00:12:00 | 1 | 6 | 24 | -2.519990 | -59.559811 | 144.0 | 155.0 | 45.0 | 30.603859 | ... | LINESTRING (-59.43389892578125 -2.573832273483... | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | -165.0 | -13.149960 | -82.0 | -10.480783 | NaN | NaN | POLYGON ((-59.54180 -2.59185, -59.54180 -2.591... | |
46 | 2014-09-07 01:00:00 | 5 | 6 | 28 | -2.520052 | -59.775608 | 132.0 | 155.0 | 101.0 | 38.155227 | ... | LINESTRING (-59.75762557983398 -2.520048618316... | LINESTRING (-59.72165298461914 -2.555973052978... | LINESTRING (-59.72165298461914 -2.555973052978... | -12.0 | -3.200698 | -20.0 | -2.084470 | -22.0 | -1.507583 | POLYGON ((-59.81156 -2.62786, -59.81156 -2.627... | |
39 | 2014-09-07 00:48:00 | 4 | 6 | 21 | -2.520049 | -59.757626 | 133.0 | 155.0 | 70.0 | 39.969711 | ... | LINESTRING (-59.64971542358398 -2.555953264236... | LINESTRING (-59.66770553588867 -2.537992477416... | GEOMETRYCOLLECTION EMPTY | -31.0 | 1.814485 | -11.0 | 1.658335 | -2.0 | 1.418080 | POLYGON ((-59.66768 -2.64579, -59.66768 -2.645... | |
33 | 2014-09-07 00:36:00 | 3 | 6 | 18 | -2.555953 | -59.649715 | 139.0 | 153.0 | 48.0 | 37.200725 | ... | LINESTRING (-59.57778167724609 -2.555928945541... | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | -22.0 | -2.768986 | -14.0 | -1.784024 | -9.0 | -1.726475 | POLYGON ((-59.63170 -2.66374, -59.63170 -2.663... | |
26 | 2014-09-07 00:24:00 | 2 | 6 | 26 | -2.555929 | -59.577782 | 143.0 | 153.0 | 40.0 | 36.061215 | ... | LINESTRING (-59.55981063842773 -2.519989967346... | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | -8.0 | -1.139510 | -5.0 | -0.446076 | -1.0 | -1.474533 | POLYGON ((-59.50583 -2.59183, -59.50583 -2.591... | |
Fam_7 | 7 | 2014-09-07 00:00:00 | 0 | 7 | 28 | -2.430241 | -59.955444 | 122.0 | 160.0 | 87.0 | 43.297086 | ... | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | NaN | NaN | NaN | NaN | NaN | NaN | POLYGON ((-59.95544 -2.53804, -59.95544 -2.538... |
17 | 2014-09-07 00:12:00 | 1 | 7 | 25 | -2.412275 | -60.009392 | 119.0 | 161.0 | 87.0 | 42.292275 | ... | LINESTRING (-59.9554443359375 -2.4302411079406... | LINESTRING (-59.9554443359375 -2.4302411079406... | LINESTRING (-59.9554443359375 -2.4302411079406... | 0.0 | -1.004810 | -7.0 | -0.350795 | 5.0 | -1.587520 | POLYGON ((-60.00939 -2.52007, -60.00939 -2.520... | |
27 | 2014-09-07 00:24:00 | 2 | 7 | 28 | -2.394305 | -60.081318 | 115.0 | 162.0 | 93.0 | 42.694945 | ... | LINESTRING (-60.00939178466797 -2.412275075912... | LINESTRING (-60.02737426757812 -2.412274837493... | LINESTRING (-60.02737426757812 -2.412274837493... | 6.0 | 0.402670 | 6.0 | 0.127497 | 7.0 | -0.087328 | POLYGON ((-60.11729 -2.50210, -60.11729 -2.502... | |
34 | 2014-09-07 00:36:00 | 3 | 7 | 21 | -2.394297 | -60.153244 | 111.0 | 162.0 | 118.0 | 41.809354 | ... | LINESTRING (-60.08131790161133 -2.394305467605... | LINESTRING (-60.08131790161133 -2.394305467605... | LINESTRING (-60.09929656982422 -2.394303798675... | 25.0 | -0.885592 | 6.0 | -0.372081 | -5.0 | 0.526667 | POLYGON ((-60.17124 -2.52006, -60.17124 -2.520... | |
40 | 2014-09-07 00:48:00 | 4 | 7 | 24 | -2.376319 | -60.225166 | 107.0 | 163.0 | 131.0 | 39.156322 | ... | LINESTRING (-60.15324401855469 -2.394297361373... | LINESTRING (-60.17122268676758 -2.376328468322... | LINESTRING (-60.17122268676758 -2.376328468322... | 13.0 | -2.653031 | 7.0 | -2.897415 | -4.0 | -2.370610 | POLYGON ((-60.20721 -2.52005, -60.20721 -2.520... | |
47 | 2014-09-07 01:00:00 | 5 | 7 | 30 | -2.376302 | -60.297089 | 103.0 | 163.0 | 152.0 | 36.072795 | ... | LINESTRING (-60.22516632080078 -2.376318693161... | LINESTRING (-60.24314117431641 -2.358348608016... | GEOMETRYCOLLECTION EMPTY | 21.0 | -3.083527 | -24.0 | -0.832133 | -13.0 | -0.991783 | POLYGON ((-60.31511 -2.53799, -60.31511 -2.537... | |
Fam_8 | 8 | 2014-09-07 00:00:00 | 0 | 8 | 29 | -2.411828 | -58.984432 | 176.0 | 161.0 | 33.0 | 31.938102 | ... | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | NaN | NaN | NaN | NaN | NaN | NaN | POLYGON ((-58.98436 -2.50165, -58.98436 -2.501... |
18 | 2014-09-07 00:12:00 | 1 | 8 | 26 | -2.411918 | -59.092323 | 170.0 | 161.0 | 62.0 | 31.605318 | ... | LINESTRING (-58.98443222045898 -2.411827564239... | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | 29.0 | -0.332785 | 3.0 | 1.891906 | NaN | NaN | POLYGON ((-59.03829 -2.51967, -59.03829 -2.519... | |
Fam_9 | 9 | 2014-09-07 00:00:00 | 0 | 9 | 33 | -2.214208 | -58.984589 | 176.0 | 172.0 | 152.0 | 29.157512 | ... | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | NaN | NaN | NaN | NaN | NaN | NaN | POLYGON ((-58.89465 -2.26802, -58.89465 -2.268... |
19 | 2014-09-07 00:12:00 | 1 | 9 | 32 | -2.196195 | -58.930668 | 179.0 | 173.0 | 32.0 | 33.655651 | ... | LINESTRING (-58.98458862304688 -2.214208364486... | GEOMETRYCOLLECTION EMPTY | GEOMETRYCOLLECTION EMPTY | -120.0 | 4.498138 | -1.0 | 4.502790 | NaN | NaN | POLYGON ((-58.89465 -2.26802, -58.89465 -2.268... |
45 rows Ă 44 columns
gd_t = geo_df.query('time == 5')
gd_t = gd_t.reset_index()
def ncdf(nc_file):
## OPEN RADAR DATA COMPRESS
with gzip.open(nc_file) as gz:
with netCDF4.Dataset('dummy', mode='r', memory=gz.read()) as nc:
data = nc.variables[VAR][0][LEVEL][:].filled()
lon = nc.variables['lon0'][:].filled()
lat = nc.variables['lat0'][:].filled()
return data,lon,lat
data_,lon_,lat_ = ncdf(gd_t.nc_file.iloc[0])
data_[data_ == -9999] = np.nan
img_pts,lons,lats = [],[],[]
for i in range(len(data_)):
for j in range(len(data_)):
if data_[i][j] != np.nan:
img_pts.append(data_[i][j])
lons.append(lon_[i][j])
lats.append(lat_[i][j])
img_df = pd.DataFrame(list(zip(lons,lats,img_pts)),
columns =['lon','lat','metric'])
import datashader.transfer_functions as tf
from colorcet import rainbow
import datashader as ds
import json
cvs = ds.Canvas(plot_width=data_.shape[0], plot_height=data_.shape[1])
agg = cvs.points(img_df, x='lon', y='lat')
coords_lat, coords_lon = agg.coords['lat'].values, agg.coords['lon'].values
# Corners of the image, which need to be passed to mapbox
coordinates = [[coords_lon[0], coords_lat[0]],
[coords_lon[-1], coords_lat[0]],
[coords_lon[-1], coords_lat[-1]],
[coords_lon[0], coords_lat[-1]]]
np.nanmin(agg.values)
-10.434811
# data_[data_ <= 20 ] = np.nan
agg.values = data_
img = tf.shade(agg, cmap=complet_rbb['HEX'].tolist(),alpha=255)[::-1].to_pil()
from colormap import rgb2hex
np.nanmin(data_)
-10.434811
map(int, results)
tab = pd.read_table('../stanalyzer/cpt/NEXRAD.cpt',sep=';',names=['RGB','DBZ'])
tab['HEX'] = tab['RGB'].apply(lambda x: rgb2hex(int(x.split(",")[0]),int(x.split(",")[1]),int(x.split(",")[2])))
tab2 = pd.DataFrame(columns=['RGB','DBZ','HEX'])
tab2['DBZ'] = np.arange(-186,-30)
tab2['HEX'] = ['#000000'] * len(tab2['DBZ'])
tab2['RGB'] = ['0, 0, 0'] * len(tab2['DBZ'])
complet_rbb = pd.concat([tab2,tab])
complet_rbb
RGB | DBZ | HEX | |
---|---|---|---|
0 | 0, 0, 0 | -186 | #000000 |
1 | 0, 0, 0 | -185 | #000000 |
2 | 0, 0, 0 | -184 | #000000 |
3 | 0, 0, 0 | -183 | #000000 |
4 | 0, 0, 0 | -182 | #000000 |
... | ... | ... | ... |
95 | 141,255,255 | 66 | #8DFFFF |
96 | 154,255,255 | 67 | #9AFFFF |
97 | 166,255,255 | 68 | #A6FFFF |
98 | 179,255,255 | 69 | #B3FFFF |
99 | 192,255,255 | 70 | #C0FFFF |
256 rows Ă 3 columns
CMAP
<matplotlib.colors.LinearSegmentedColormap at 0x7f121a455a90>
complet_rbb['HEX'].tolist()
['#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#000000', '#363636', '#373737', '#383838', '#393939', '#3A3A3A', '#3B3B3B', '#3C3C3C', '#3D3D3D', '#3E3E3E', '#3F3F3F', '#404040', '#414141', '#424242', '#434343', '#444444', '#454545', '#464646', '#474747', '#484848', '#494949', '#4A4A4A', '#4B4B4B', '#4C4C4C', '#575757', '#616161', '#6C6C6C', '#767676', '#818181', '#8B8B8B', '#969696', '#A0A0A0', '#ABABAB', '#B5B5B5', '#C0C0C0', '#0032FF', '#0046FF', '#005AFF', '#006EFF', '#0082FF', '#0096FF', '#00AAFF', '#008000', '#008A00', '#009400', '#009E00', '#00A300', '#00A800', '#00AD00', '#00B200', '#0AD00A', '#0ADA0A', '#0AE40A', '#0AEE0A', '#0AF80A', '#FFFF0F', '#FFF60F', '#FFEE0F', '#FFE50F', '#FFDC0F', '#FFC800', '#FFB400', '#FFA000', '#FF8C00', '#FF7800', '#FF2323', '#FF0F0F', '#FF0000', '#EB0000', '#D70000', '#C30000', '#AF0000', '#9B0000', '#870000', '#730000', '#AF00AF', '#B800B8', '#C100C1', '#CA00CA', '#D300D3', '#DB00DB', '#E400E4', '#ED00ED', '#F600F6', '#FF00FF', '#00FFFF', '#0DFFFF', '#1AFFFF', '#27FFFF', '#33FFFF', '#40FFFF', '#4DFFFF', '#5AFFFF', '#66FFFF', '#73FFFF', '#80FFFF', '#8DFFFF', '#9AFFFF', '#A6FFFF', '#B3FFFF', '#C0FFFF']
rainbow
['#0034f8', '#0037f6', '#003af3', '#003df0', '#003fed', '#0041ea', '#0044e7', '#0046e4', '#0048e1', '#004ade', '#004cdb', '#004fd8', '#0051d5', '#0053d2', '#0054d0', '#0056cd', '#0058ca', '#005ac7', '#005cc4', '#005ec1', '#0060be', '#0061bb', '#0063b8', '#0065b6', '#0066b3', '#0068b0', '#006aad', '#006baa', '#006da7', '#006ea5', '#006fa2', '#00719f', '#00729d', '#00739a', '#007598', '#007695', '#077793', '#0d7890', '#13798e', '#187a8b', '#1c7b89', '#1f7c87', '#237d84', '#267e82', '#287f7f', '#2b807d', '#2d817b', '#2f8278', '#318376', '#328473', '#348571', '#35866f', '#36876c', '#37886a', '#388967', '#398a65', '#3a8b62', '#3b8c60', '#3c8e5d', '#3c8f5b', '#3d9058', '#3d9155', '#3e9253', '#3e9350', '#3e944d', '#3e954a', '#3e9647', '#3f9745', '#3f9842', '#3e993e', '#3e9a3b', '#3e9b38', '#3e9c35', '#3e9d32', '#3e9e2e', '#3e9f2b', '#3fa027', '#3fa124', '#40a221', '#41a31d', '#42a41a', '#44a517', '#45a615', '#47a713', '#4aa711', '#4ca80f', '#4fa90e', '#51a90d', '#54aa0d', '#57ab0d', '#5aab0d', '#5dac0d', '#5fad0d', '#62ad0e', '#65ae0e', '#67ae0e', '#6aaf0f', '#6db00f', '#6fb00f', '#72b110', '#74b110', '#77b211', '#79b211', '#7cb311', '#7eb412', '#80b412', '#83b512', '#85b513', '#88b613', '#8ab613', '#8cb714', '#8fb814', '#91b815', '#93b915', '#95b915', '#98ba16', '#9aba16', '#9cbb16', '#9fbb17', '#a1bc17', '#a3bc18', '#a5bd18', '#a7be18', '#aabe19', '#acbf19', '#aebf19', '#b0c01a', '#b2c01a', '#b5c11b', '#b7c11b', '#b9c21b', '#bbc21c', '#bdc31c', '#c0c31c', '#c2c41d', '#c4c41d', '#c6c51d', '#c8c51e', '#cac61e', '#cdc61f', '#cfc71f', '#d1c71f', '#d3c820', '#d5c820', '#d7c920', '#d9c921', '#dcca21', '#deca22', '#e0ca22', '#e2cb22', '#e4cb23', '#e6cc23', '#e8cc23', '#eacc24', '#eccd24', '#eecd24', '#f0cd24', '#f2cd24', '#f3cd24', '#f5cc24', '#f6cc24', '#f8cb24', '#f9ca24', '#f9c923', '#fac823', '#fbc722', '#fbc622', '#fcc521', '#fcc421', '#fcc220', '#fdc120', '#fdc01f', '#fdbe1f', '#fdbd1e', '#febb1d', '#feba1d', '#feb91c', '#feb71b', '#feb61b', '#feb51a', '#ffb31a', '#ffb219', '#ffb018', '#ffaf18', '#ffae17', '#ffac16', '#ffab16', '#ffa915', '#ffa815', '#ffa714', '#ffa513', '#ffa413', '#ffa212', '#ffa111', '#ff9f10', '#ff9e10', '#ff9c0f', '#ff9b0e', '#ff9a0e', '#ff980d', '#ff970c', '#ff950b', '#ff940b', '#ff920a', '#ff9109', '#ff8f08', '#ff8e08', '#ff8c07', '#ff8b06', '#ff8905', '#ff8805', '#ff8604', '#ff8404', '#ff8303', '#ff8102', '#ff8002', '#ff7e01', '#ff7c01', '#ff7b00', '#ff7900', '#ff7800', '#ff7600', '#ff7400', '#ff7200', '#ff7100', '#ff6f00', '#ff6d00', '#ff6c00', '#ff6a00', '#ff6800', '#ff6600', '#ff6400', '#ff6200', '#ff6100', '#ff5f00', '#ff5d00', '#ff5b00', '#ff5900', '#ff5700', '#ff5500', '#ff5300', '#ff5000', '#ff4e00', '#ff4c00', '#ff4a00', '#ff4700', '#ff4500', '#ff4200', '#ff4000', '#ff3d00', '#ff3a00', '#ff3700', '#ff3400', '#ff3100', '#ff2d00', '#ff2a00']
geo1 = json.loads(gpd.GeoSeries(gd_t['geom_20'].apply(wkt.loads)).to_json())
geo2 = json.loads(gpd.GeoSeries(gd_t['geom_35'].apply(wkt.loads)).to_json())
geo3 = json.loads(gpd.GeoSeries(gd_t['geom_40'].apply(wkt.loads)).to_json())
traj = json.loads(gpd.GeoSeries(gd_t['trajectory'].apply(wkt.loads)).to_json())
img
img
img
layers1 = [
{'source': geo1,
'type': "line",
'color': "black",
'line':dict(width=1.5)
},
{'source': geo2,
'type': "line",
'color': "royalblue",
'name':'ds',
'line':dict(width=0.8)
},
{'source': geo3,
'type': "line",
'color': "red",
'name':'ds',
'line':dict(width=0.8)
},
{'source': traj,
'type': "line",
'color': "red",
'name':'ds',
'line':dict(width=1.8)
},
{"sourcetype": "image",
'below': "traces",
"source": img,
"coordinates": coordinates,
}
]
--------------------------------------------------------------------------- NameError Traceback (most recent call last) <ipython-input-1-a4c572a0e638> in <module> 1 layers1 = [ ----> 2 {'source': geo1, 3 'type': "line", 4 'color': "black", 5 'line':dict(width=1.5) NameError: name 'geo1' is not defined
colorbar=dict(thickness=20,
ticklen=3, tickcolor='orange',
tickfont=dict(size=14, color='orange'))
showscale=True,
colorscale=[[0, 'green'],[1, 'red']],
cmin=0,
cmax=10
mapbox_access_token = 'pk.eyJ1Ijoic3BsaW50ZXJzdG0iLCJhIjoiY2tydWxjMzdlMTRxYTJwcGZlYmc0aWJyYSJ9.3-nO2w18a1fbjmAXrH7kEA'
hover_info = dict(bgcolor="white",
font_size=14,
font_family="Rockwell")
hover_temp = "<b>%{customdata[0]} </b><br><br>" + \
"longitude: %{lon}<br>" + \
"latitude: %{lat}<br>" + \
"UID: %{customdata[1]}<extra></extra>"
### FIGURE
data = go.Scattermapbox(customdata=gd_t[['timestamp','uid','time']],
lat=list(gd_t["lat"]), lon=list(gd_t["lon"]),
textfont=dict(size=16, color='black'),
hoverlabel=hover_info,
mode='markers',
marker=dict(size=10, color='black',
showscale=True,colorscale=[[0, 'green'],[1, 'red']],cmin=0,cmax=50,
colorbar=dict(thickness=20,
ticklen=3, tickcolor='orange',
tickfont=dict(size=14, color='orange'))),
hovertemplate = hover_temp,
)
layout = dict(margin=dict(l=0, t=0, r=0, b=0, pad=0),
mapbox=dict(layers=layers1,
accesstoken=mapbox_access_token,
center=dict(lat=-3.14, lon=-60),
style='light',
zoom=6),
)
fig = go.Figure(data=data, layout=layout)
fig.update_mapboxes()
fig.show()
fig = go.Figure()
fig = px.scatter_mapbox(gd_t, lat="lat", lon="lon", hover_name="uid", hover_data=["time", "uid","max_ref_20"],
color_discrete_sequence=["fuchsia"],width=900, height=700)
fig.update_layout(mapbox=dict(layers=layers,
style="stamen-terrain",
center = {'lon': -60, 'lat': -3.14},
zoom = 6))
# buttons for updatemenu
buttons = [dict(method='restyle',
label='linear',
visible=True,
args=[{'label': 'linear',
'visible':[True, False],}]),
dict(method='restyle',
label='sqrt',
visible=True,
args=[{'label': 'linear',
'visible':[False, True],}])]
# specify updatemenu
um = [{'buttons':buttons, 'direction': 'down'}]
fig.update_layout(updatemenus=um)
fig.show()
fig.update_layout(
updatemenus=[
dict(
buttons=list([
dict(label="High",
method="update",
args=[{"visible": [False]},
{"shapes": layers1[3]}])
]),
type = "buttons",
direction="right",
pad={"r": 0, "t": 0},
showactive=True,
x=0.38,
xanchor="left",
y=1,
yanchor="top"
)
])
width=800, height=400
fig = px.density_mapbox(img_df,lat="lat", lon="lon",z='metric',radius=5)
fig.update_layout(mapbox=dict(layers=layers,
style="stamen-terrain",
center = {'lon': -60, 'lat': -3.14},
zoom = 6
),
)
fig.update_layout(mapbox=dict(layers=layers,
style="stamen-terrain",
center = {'lon': -60, 'lat': -3.14},
zoom = 6
),
)
x_states = []
y_states = []
for i,row in gd_t.iterrows():
x = row.geometry.exterior.xy[0].tolist()
y = row.geometry.exterior.xy[0].tolist()
for segment in range(len(x)):
x_states = x_states + x
y_states = y_states + y
state_trace = [dict(
type = 'scatter',
legendgroup = "States",
line = dict(color='white', width=1),
x = x_states,
y = y_states,
hoverinfo='none',
showlegend=False,
mode='lines')]
dir(go.Choroplethmapbox)
['__class__', '__contains__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__iter__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__setitem__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', '_build_repr_for_class', '_dispatch_change_callbacks', '_dispatch_on_click', '_dispatch_on_deselect', '_dispatch_on_hover', '_dispatch_on_selection', '_dispatch_on_unhover', '_get_child_prop_defaults', '_get_child_props', '_get_prop_validator', '_get_validator', '_in_batch_mode', '_init_child_props', '_init_props', '_mapped_properties', '_parent_path_str', '_path_str', '_process_kwargs', '_prop_defaults', '_prop_descriptions', '_prop_set_child', '_props', '_raise_on_invalid_property_error', '_relayout_child', '_restyle_child', '_send_prop_set', '_set_array_prop', '_set_compound_prop', '_set_prop', '_valid_props', '_validators', '_vals_equal', 'autocolorscale', 'below', 'coloraxis', 'colorbar', 'colorscale', 'customdata', 'customdatasrc', 'featureidkey', 'figure', 'geojson', 'hoverinfo', 'hoverinfosrc', 'hoverlabel', 'hovertemplate', 'hovertemplatesrc', 'hovertext', 'hovertextsrc', 'ids', 'idssrc', 'legendgroup', 'legendgrouptitle', 'legendrank', 'locations', 'locationssrc', 'marker', 'meta', 'metasrc', 'name', 'on_change', 'on_click', 'on_deselect', 'on_hover', 'on_selection', 'on_unhover', 'parent', 'plotly_name', 'pop', 'reversescale', 'selected', 'selectedpoints', 'showlegend', 'showscale', 'stream', 'subplot', 'text', 'textsrc', 'to_plotly_json', 'type', 'uid', 'uirevision', 'unselected', 'update', 'visible', 'z', 'zauto', 'zmax', 'zmid', 'zmin', 'zsrc']
fig = go.Figure(go.Choroplethmapbox(geojson=gd_t.geometry,
locations=gd_t.index,
z=gd_t.uid,
colorscale='Viridis',
zauto=True,
marker_opacity=0.5,
marker_line_width=0.5)
)
# fig.update_layout(mapbox_style='white-bg',
# #mapbox_accesstoken=mapbox_token,
# mapbox_zoom=12,
# mapbox_center={'lat': 45.41117, 'lon': -75.69812})
# fig.update_layout(margin={'r':0, 't':0, 'l':0, 'b':0})
# pio.renderers.default = 'browser'
fig.show()
--------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-39-bec4559ee083> in <module> 13 # fig.update_layout(margin={'r':0, 't':0, 'l':0, 'b':0}) 14 # pio.renderers.default = 'browser' ---> 15 fig.show() ~/miniconda3/envs/stanalyzer/lib/python3.7/site-packages/plotly/basedatatypes.py in show(self, *args, **kwargs) 3396 import plotly.io as pio 3397 -> 3398 return pio.show(self, *args, **kwargs) 3399 3400 def to_json(self, *args, **kwargs): ~/miniconda3/envs/stanalyzer/lib/python3.7/site-packages/plotly/io/_renderers.py in show(fig, renderer, validate, **kwargs) 387 388 # Mimetype renderers --> 389 bundle = renderers._build_mime_bundle(fig_dict, renderers_string=renderer, **kwargs) 390 if bundle: 391 if not ipython_display: ~/miniconda3/envs/stanalyzer/lib/python3.7/site-packages/plotly/io/_renderers.py in _build_mime_bundle(self, fig_dict, renderers_string, **kwargs) 295 setattr(renderer, k, v) 296 --> 297 bundle.update(renderer.to_mimebundle(fig_dict)) 298 299 return bundle ~/miniconda3/envs/stanalyzer/lib/python3.7/site-packages/plotly/io/_base_renderers.py in to_mimebundle(self, fig_dict) 94 95 json_compatible_fig_dict = json.loads( ---> 96 to_json(fig_dict, validate=False, remove_uids=False) 97 ) 98 ~/miniconda3/envs/stanalyzer/lib/python3.7/site-packages/plotly/io/_json.py in to_json(fig, validate, pretty, remove_uids, engine) 195 trace.pop("uid", None) 196 --> 197 return to_json_plotly(fig_dict, pretty=pretty, engine=engine) 198 199 ~/miniconda3/envs/stanalyzer/lib/python3.7/site-packages/plotly/io/_json.py in to_json_plotly(plotly_object, pretty, engine) 122 from _plotly_utils.utils import PlotlyJSONEncoder 123 --> 124 return json.dumps(plotly_object, cls=PlotlyJSONEncoder, **opts) 125 elif engine == "orjson": 126 JsonConfig.validate_orjson() ~/miniconda3/envs/stanalyzer/lib/python3.7/json/__init__.py in dumps(obj, skipkeys, ensure_ascii, check_circular, allow_nan, cls, indent, separators, default, sort_keys, **kw) 236 check_circular=check_circular, allow_nan=allow_nan, indent=indent, 237 separators=separators, default=default, sort_keys=sort_keys, --> 238 **kw).encode(obj) 239 240 ~/miniconda3/envs/stanalyzer/lib/python3.7/site-packages/_plotly_utils/utils.py in encode(self, o) 57 """ 58 # this will raise errors in a normal-expected way ---> 59 encoded_o = super(PlotlyJSONEncoder, self).encode(o) 60 # Brute force guessing whether NaN or Infinity values are in the string 61 # We catch false positive cases (e.g. strings such as titles, labels etc.) ~/miniconda3/envs/stanalyzer/lib/python3.7/json/encoder.py in encode(self, o) 197 # exceptions aren't as detailed. The list call should be roughly 198 # equivalent to the PySequence_Fast that ''.join() would do. --> 199 chunks = self.iterencode(o, _one_shot=True) 200 if not isinstance(chunks, (list, tuple)): 201 chunks = list(chunks) ~/miniconda3/envs/stanalyzer/lib/python3.7/json/encoder.py in iterencode(self, o, _one_shot) 255 self.key_separator, self.item_separator, self.sort_keys, 256 self.skipkeys, _one_shot) --> 257 return _iterencode(o, 0) 258 259 def _make_iterencode(markers, _default, _encoder, _indent, _floatstr, ~/miniconda3/envs/stanalyzer/lib/python3.7/site-packages/_plotly_utils/utils.py in default(self, obj) 134 except NotEncodable: 135 pass --> 136 return _json.JSONEncoder.default(self, obj) 137 138 @staticmethod ~/miniconda3/envs/stanalyzer/lib/python3.7/json/encoder.py in default(self, o) 177 178 """ --> 179 raise TypeError(f'Object of type {o.__class__.__name__} ' 180 f'is not JSON serializable') 181 TypeError: Object of type Polygon is not JSON serializable
df
country | continent | year | lifeExp | pop | gdpPercap | iso_alpha | iso_num | |
---|---|---|---|---|---|---|---|---|
0 | Afghanistan | Asia | 1952 | 28.801 | 8425333 | 779.445314 | AFG | 4 |
1 | Afghanistan | Asia | 1957 | 30.332 | 9240934 | 820.853030 | AFG | 4 |
2 | Afghanistan | Asia | 1962 | 31.997 | 10267083 | 853.100710 | AFG | 4 |
3 | Afghanistan | Asia | 1967 | 34.020 | 11537966 | 836.197138 | AFG | 4 |
4 | Afghanistan | Asia | 1972 | 36.088 | 13079460 | 739.981106 | AFG | 4 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
1699 | Zimbabwe | Africa | 1987 | 62.351 | 9216418 | 706.157306 | ZWE | 716 |
1700 | Zimbabwe | Africa | 1992 | 60.377 | 10704340 | 693.420786 | ZWE | 716 |
1701 | Zimbabwe | Africa | 1997 | 46.809 | 11404948 | 792.449960 | ZWE | 716 |
1702 | Zimbabwe | Africa | 2002 | 39.989 | 11926563 | 672.038623 | ZWE | 716 |
1703 | Zimbabwe | Africa | 2007 | 43.487 | 12311143 | 469.709298 | ZWE | 716 |
1704 rows Ă 8 columns
import plotly.express as px
df = px.data.gapminder()
fig = px.choropleth(df, locations="iso_alpha",
color="lifeExp", # lifeExp is a column of gapminder
hover_name="country", # column to add to hover information
color_continuous_scale=px.colors.sequential.Plasma,
animation_frame='year')
# fig2 = px.scatter_geo(df, locations="iso_alpha",
# size="lifeExp", # lifeExp is a column of gapminder
# hover_name="country", # column to add to hover information
# color_continuous_scale=px.colors.sequential.Plasma,
# animation_frame='year')
fig.add_trace(fig2.data[0])
# for i, frame in enumerate(fig.frames):
# fig.frames[i].data += (fig2.frames[i].data[0],)
fig.show()
!conda install -c plotly plotly_express -y
open_ncdf(df_filter1['nc_file'].iloc[0])
from shapely import wkt
import numpy as np
fam_test = df_filter1.query('uid == 118')
fam_test['geom_35'].fillna(value='GEOMETRYCOLLECTION EMPTY', inplace=True)
geo_frame = gpd.GeoDataFrame()
geo_frame['geometry'] = fam_test['geom_35'].apply(wkt.loads)
geo_frame.tail(2).plot()
fam_test['geom_35'].apply(wkt.loads)
tt = gpd.GeoDataFrame()
tt['geometry'] = fam_test['geom_intersect'].apply(wkt.loads)
tt.plot()
import geopandas as gpd
### PATH
PATH_FILE = '../tracks/S201409070000_E201409100000_VDBZc_T20_L5.pkl'
### Read tracking file
df = sta.read_file(PATH_FILE)
df.head()
sta.life_cicle()
life_cicle(df)
# Dataframe library
import pandas as pd
# Numerical Python library
import numpy as np
# netCDF4 library
import netCDF4
# Import gzip to open netCDF
import gzip
# Visualization library
import matplotlib.pyplot as plt
Fam_NÂș-> Refers to the number of the Tracked Family.
timestamp ->A digital record of the time of occurrence of a particular event.
Tracking DataFrame.
fam_tracking = pd.read_pickle("./S201409070000_E201409100000_VDBZc_T20_L5.pkl")
fam_tracking
uid = 97
selected_fam = fam_tracking.query('uid == @uid')
selected_fam
line = 0 #first line
selected_line = selected_fam.iloc[[line]]
selected_line
## OPEN CLUSTERS
def open_cluster(path):
try:
cluster = np.load(path['cluster_file'].values[0])['arr_0']
cluster[cluster == 0] = np.NAN
return cluster
except:
print('File not found!')
selected_line
cluster_matrix_all = open_cluster(selected_line)
print('Original dimensions of cluster->',cluster_matrix_all.shape)
THRESHOLD_LEVEL = 0 #to select the main threshold (ex: 0-20dBZ,1-35dBZ,2-40dBZ)
cluster_matrix = cluster_matrix_all[:,:,THRESHOLD_LEVEL]
print('Selected dimensions of cluster->',cluster_matrix.shape)
### OPEN NETCDF
def open_file(file_path):
VAR_NAME = 'DBZc'
LEVEL = 5 #2.5km height
THRESHOLDS = [20,35,40] #dBZ
with gzip.open(file_path['nc_file'].values[0]) as gz:
with netCDF4.Dataset('dummy', mode='r', memory=gz.read()) as nc:
data = nc.variables[VAR_NAME][0][LEVEL][:].filled()
data[data == -9999.] = np.NAN
data[data < THRESHOLDS[0]] = np.nan
return data
nc_matrix = open_file(selected_line)
print('NetCDF Max/Min values (thresholded):\n',np.nanmax(nc_matrix),np.nanmin(nc_matrix))
fig, (ax,ax1) = plt.subplots(1,2, figsize=(15,6))
ax.imshow(nc_matrix)
ax1.imshow(cluster_matrix);
ax.set_title('Original file')
ax1.set_title('Cluster file');
To extract the reflectivity values of an individual cluster, you will need to choose the tracking 'id_t', this should be done as follows:
Visualization of individual line.
selected_line
### This line shows that id_t is equal to 20.
selected_id_t = selected_line.id_t.values[0]
### Get XY coordinates from cluster matrix
x,y = np.where(cluster_matrix == selected_id_t)
### Get reflectivities values from nc_file cluster
dbz_list = nc_matrix[x,y]
print('List with reflectivity values of an individual cluster.\n',dbz_list)
fig, (ax,ax1) = plt.subplots(1,2, figsize=(15,6))
ax.imshow(nc_matrix)
ax1.imshow(cluster_matrix);
ax.set_title('Original file')
ax1.set_title('Cluster file');
ax.scatter(selected_line.p0,selected_line.p1,marker='x',color='r',s=100)
ax1.scatter(selected_line.p0,selected_line.p1,marker='x',color='r',s=100)