The Plotly pane displays Plotly plots within a Panel application. It enhances the speed of plot updates by using binary serialization for array data contained in the Plotly object.
Please remember that to use the Plotly pane in a Jupyter notebook, you must activate the Panel extension and include "plotly"
as an argument. This step ensures that plotly.js is properly set up.
import panel as pn
pn.extension("plotly")
For details on other options for customizing the component see the general layout and styling how-to guides as well as the specific Style Plotly Plots how-to guide.
object
(object): The Plotly Figure
or dictionary object being displayed.config
(dict): Additional configuration of the plot. See Plotly configuration options.link_figure
(bool, default: True): Update the displayed Plotly figure when the Plotly Figure
is modified in place.click_data
(dict): Click event data from plotly_click
event.clickannotation_data
(dict): Clickannotation event data from plotly_clickannotation
event.hover_data
(dict): Hover event data from plotly_hover
and plotly_unhover
events.relayout_data
(dict): Relayout event data from plotly_relayout
eventrestyle_data
(dict): Restyle event data from plotly_restyle
eventselected_data
(dict): Selected event data from plotly_selected
and plotly_deselect
events.viewport
(dict): Current viewport state, i.e. the x- and y-axis limits of the displayed plot. Updated on plotly_relayout
, plotly_relayouting
and plotly_restyle
events.viewport_update_policy
(str, default = 'mouseup'): Policy by which the viewport parameter is updated during user interactionsmouseup
: updates are synchronized when mouse button is released after panningcontinuous
: updates are synchronized continually while panningthrottle
: updates are synchronized while panning, at intervals determined by the viewport_update_throttle parameterviewport_update_throttle
(int, default = 200, bounds = (0, None)): Time interval in milliseconds at which viewport updates are synchronized when viewport_update_policy is "throttle".As with most other types Panel
will automatically convert a Plotly Figure
to a Plotly
pane if it is passed to the pn.panel
function or a Panel layout, but a Plotly
pane can also be constructed directly using the pn.pane.Plotly
constructor:
Lets create a basic example
import numpy as np
import plotly.graph_objs as go
import panel as pn
pn.extension("plotly")
xx = np.linspace(-3.5, 3.5, 100)
yy = np.linspace(-3.5, 3.5, 100)
x, y = np.meshgrid(xx, yy)
z = np.exp(-((x - 1) ** 2) - y**2) - (x**3 + y**4 - x / 5) * np.exp(-(x**2 + y**2))
surface=go.Surface(z=z)
fig = go.Figure(data=[surface])
fig.update_layout(
title="Plotly 3D Plot",
width=500,
height=500,
margin=dict(t=50, b=50, r=50, l=50),
)
plotly_pane = pn.pane.Plotly(fig)
plotly_pane
Once created Plotly
pane can be updated by assigning a new figure object
new_fig = go.Figure(data=[go.Surface(z=np.sin(z+1))])
new_fig.update_layout(
title="Plotly 3D Plot",
width=500,
height=500,
margin=dict(t=50, b=50, r=50, l=50),
)
plotly_pane.object = new_fig
Lets reset the Plotly pane
plotly_pane.object = fig
The Plotly
pane supports layouts and subplots of arbitrary complexity, allowing even deeply nested Plotly figures to be displayed:
import panel as pn
from plotly import subplots
pn.extension("plotly")
heatmap = go.Heatmap(
z=[[1, 20, 30],
[20, 1, 60],
[30, 60, 1]],
showscale=False)
y0 = np.random.randn(50)
y1 = np.random.randn(50)+1
box_1 = go.Box(y=y0)
box_2 = go.Box(y=y1)
data = [heatmap, box_1, box_2]
fig_layout = subplots.make_subplots(
rows=2, cols=2, specs=[[{}, {}], [{'colspan': 2}, None]],
subplot_titles=('First Subplot','Second Subplot', 'Third Subplot')
)
fig_layout.append_trace(box_1, 1, 1)
fig_layout.append_trace(box_2, 1, 2)
fig_layout.append_trace(heatmap, 2, 1)
fig_layout['layout'].update(height=600, width=600, title='i <3 subplots')
pn.pane.Plotly(fig_layout)
Plotly plots can be made responsive using the autosize
option on a Plotly layout and a responsive sizing_mode
argument to the Plotly
pane:
import pandas as pd
import panel as pn
import plotly.express as px
pn.extension("plotly")
data = pd.DataFrame([
('Monday', 7), ('Tuesday', 4), ('Wednesday', 9), ('Thursday', 4),
('Friday', 4), ('Saturday', 4), ('Sunday', 4)], columns=['Day', 'Orders']
)
fig_responsive = px.line(data, x="Day", y="Orders")
fig_responsive.update_traces(mode="lines+markers", marker=dict(size=10), line=dict(width=4))
fig_responsive.layout.autosize = True
responsive = pn.pane.Plotly(fig_responsive, height=300)
pn.Column('## A responsive plot', responsive, sizing_mode='stretch_width')
You can set the Plotly configuration options via the config
parameter. Lets try to configure scrollZoom
:
responsive_with_zoom = pn.pane.Plotly(fig_responsive, config={"scrollZoom": True}, height=300)
pn.Column('## A responsive and scroll zoomable plot', responsive_with_zoom, sizing_mode='stretch_width')
Try scrolling with the mouse over the plot!
Instead of updating the entire Figure you can efficiently patch traces or the layout if you use a dictionary instead of a Plotly Figure.
Note patching will only be efficient if the Figure
is defined as a dictionary, since Plotly will make copies of the traces, which means that modifying them in place has no effect. Modifying an array will send just the array using a binary protocol, leading to fast and efficient updates.
import numpy as np
import plotly.graph_objs as go
import panel as pn
pn.extension("plotly")
xx = np.linspace(-3.5, 3.5, 100)
yy = np.linspace(-3.5, 3.5, 100)
x, y = np.meshgrid(xx, yy)
z = np.exp(-((x - 1) ** 2) - y**2) - (x**3 + y**4 - x / 5) * np.exp(-(x**2 + y**2))
surface = go.Surface(z=z)
layout = go.Layout(
title='Plotly 3D Plot',
autosize=False,
width=500,
height=500,
margin=dict(t=50, b=50, r=50, l=50)
)
fig_patch = dict(data=[surface], layout=layout)
plotly_pane_patch = pn.pane.Plotly(fig_patch)
plotly_pane_patch
surface.z = np.sin(z+1)
plotly_pane_patch.object = fig_patch
Similarly, modifying the plot layout
will only modify the layout, leaving the traces unaffected.
fig_patch['layout']['width'] = 800
plotly_pane_patch.object = fig_patch
Lets reset the Plotly pane
surface.z = z
fig_patch['layout']['width'] = 500
plotly_pane_patch.object = fig_patch
You can stream updates by replacing the entire Figure object. To stream efficiently though you should use patching technique described above.
You can stream periodically using pn.state.add_periodic_callback
.
import pandas as pd
import plotly.graph_objects as go
import panel as pn
pn.extension("plotly")
df = pn.cache(pd.read_csv)(
"https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv"
)
start_index = 50
data = go.Ohlc(
x=df.loc[:start_index, "Date"],
open=df.loc[:start_index, "AAPL.Open"],
high=df.loc[:start_index, "AAPL.High"],
low=df.loc[:start_index, "AAPL.Low"],
close=df.loc[:start_index, "AAPL.Close"],
)
fig_stream = {"data": data, "layout": go.Layout(xaxis_rangeslider_visible=False)}
plotly_pane_stream = pn.pane.Plotly(fig_stream)
def stream():
index = len(data.x)
if index == len(df):
index = 0
data["x"] = df.loc[:index, "Date"]
data["open"] = df.loc[:index, "AAPL.Open"]
data["high"] = df.loc[:index, "AAPL.High"]
data["low"] = df.loc[:index, "AAPL.Low"]
data["close"] = df.loc[:index, "AAPL.Close"]
plotly_pane_stream.object = fig_stream
pn.state.add_periodic_callback(stream, period=100, count=50)
plotly_pane_stream
You can also stream via a generator or async generator function:
from asyncio import sleep
import pandas as pd
import plotly.graph_objects as go
import panel as pn
pn.extension("plotly")
df = pn.cache(pd.read_csv)(
"https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv"
)
start_index = 50
data = go.Ohlc(
x=df.loc[:start_index, "Date"],
open=df.loc[:start_index, "AAPL.Open"],
high=df.loc[:start_index, "AAPL.High"],
low=df.loc[:start_index, "AAPL.Low"],
close=df.loc[:start_index, "AAPL.Close"],
)
layout = go.Layout(xaxis_rangeslider_visible=False)
async def stream_generator():
for _ in range(start_index, start_index+50):
index = len(data.x)
if index == len(df):
index = 0
data["x"] = df.loc[:index, "Date"]
data["open"] = df.loc[:index, "AAPL.Open"]
data["high"] = df.loc[:index, "AAPL.High"]
data["low"] = df.loc[:index, "AAPL.Low"]
data["close"] = df.loc[:index, "AAPL.Close"]
yield {"data": data, "layout": layout}
await sleep(0.05)
pn.pane.Plotly(stream_generator)
An alternative to updating the figure dictionary is updating the Plotly Figure
in place, i.e. via its attributes and methods.
import plotly.graph_objects as go
import panel as pn
pn.extension("plotly")
fig_in_place = go.Figure()
button = pn.widgets.Button(name="Create", button_type="primary")
def handle_click(clicks):
mod = clicks % 3
if mod == 1:
button.name = "Update"
fig_in_place.add_scatter(y=[2, 1, 4, 3])
fig_in_place.add_bar(y=[2, 1, 4, 3])
fig_in_place.layout.title = "New Figure"
elif mod == 2:
button.name = "Reset"
scatter = fig_in_place.data[0]
scatter.y = [3, 1, 4, 3]
bar = fig_in_place.data[1]
bar.y = [5, 3, 2, 8]
fig_in_place.layout.title.text = "Updated Figure"
else:
fig_in_place.data = []
fig_in_place.layout = {"title": ""}
button.name = "Create"
pn.bind(handle_click, button.param.clicks, watch=True)
button.clicks=1
plotly_pane_in_place = pn.pane.Plotly(
fig_in_place,
height=400,
width=700,
# link_figure=False
)
pn.Column(
button,
plotly_pane_in_place,
)
This enables you to use the Plotly Figure
in the same way as you would have been using the Plotly FigureWidget
.
If you for some reason want to disable in place updates, you can set link_figure=False
when you create the Plotly
pane. You cannot change this when the pane has been created.
The Plotly pane enables you to bind to most of the click, hover, selection and other events described in Plotly Event Handlers.
import plotly.express as px
import panel as pn
import pandas as pd
pn.extension("plotly")
# Create dataframe
x = [1, 2, 3, 4, 5]
y = [10, 20, 30, 20, 10]
df = pd.DataFrame({'x': x, 'y': y})
# Create scatter plot
fig_events = px.scatter(df, x='x', y='y', title='Click on a Point!', hover_name='x',)
fig_events.update_traces(marker=dict(size=20))
fig_events.update_layout(autosize=True, hovermode='closest')
plotly_pane_event=pn.pane.Plotly(fig_events, height=400, max_width=1200, sizing_mode="stretch_width")
# Define Child View
def child_view(event):
if not event:
return "No point clicked"
try:
point = event["points"][0]
index = point['pointIndex']
x = point['x']
y = point['y']
except Exception as ex:
return f"You clicked the Plotly Chart! I could not determine the point: {ex}"
return f"**You clicked point {index} at ({x}, {y}) on the Plotly Chart!**"
ichild_view = pn.bind(child_view, plotly_pane_event.param.click_data)
# Put things together
pn.Column(plotly_pane_event, ichild_view)
The be able to work with the events its a good idea to inspect them. You can do that by printing them or including them in your visualization.
Lets display them.
event_parameters = ["click_data", "click_annotation_data", "hover_data", "relayout_data", "restyle_data", "selected_data", "viewport"]
pn.Param(plotly_pane_event, parameters=event_parameters, max_width=1100, name="Plotly Event Parameters")
In the plot above, try hovering, clicking, selecting and changing the viewport by panning. Watch how the parameter values just above changes.
A common technique for exploring higher-dimensional datasets is the use of Parent-Child views. This approach allows you to employ a top-down method to initially exing thehree most important dimensions in the parent plot. You can then select a subset of the data points and examine them in greater detail and across additional dimensions.
Let's create a plot where Box or Lasso selections in the parent plot update a child plot. We will also customize the action bars using the config
parameter.
import pandas as pd
import plotly.express as px
import panel as pn
pn.extension("plotly")
df = (
pd.read_csv("https://datasets.holoviz.org/penguins/v1/penguins.csv")
.dropna()
.reset_index(drop=True)
)
df["index"] = df.index # Used to filter rows for child view
color_map = {"Adelie": "blue", "Chinstrap": "red", "Gentoo": "green"}
fig_parent = px.scatter(
df,
x="flipper_length_mm",
y="body_mass_g",
color_discrete_map=color_map,
custom_data="index", # Used to filter rows for child view
color="species",
title="<b>Parent Plot</b>: Box or Lasso Select Points",
)
def fig_child(selectedData):
if selectedData:
indices = [point["customdata"][0] for point in selectedData["points"]]
filtered_df = df.iloc[indices]
title = f"<b>Child Plot</b>: Selected Points({len(indices)})"
else:
filtered_df = df
title = f"<b>Child Plot</b>: All Points ({len(filtered_df)})"
fig = px.scatter(
filtered_df,
x="bill_length_mm",
y="bill_depth_mm",
color_discrete_map=color_map,
color="species",
hover_data={"flipper_length_mm": True, "body_mass_g": True},
title=title,
)
return fig
parent_config = {
"modeBarButtonsToAdd": ["select2d", "lasso2d"],
"modeBarButtonsToRemove": [
"zoomIn2d",
"zoomOut2d",
"pan2d",
"zoom2d",
"autoScale2d",
],
"displayModeBar": True,
"displaylogo": False,
}
parent_pane = pn.pane.Plotly(fig_parent, config=parent_config)
ifig_child = pn.bind(fig_child, parent_pane.param.selected_data)
child_config = {
"modeBarButtonsToRemove": [
"select2d",
"lasso2d",
"zoomIn2d",
"zoomOut2d",
"pan2d",
"zoom2d",
"autoScale2d",
],
"displayModeBar": True,
"displaylogo": False,
}
child_pane = pn.pane.Plotly(ifig_child, config=child_config)
pn.FlexBox(parent_pane, child_pane)
The Plotly
pane exposes a number of options which can be changed from both Python and Javascript try out the effect of these parameters interactively:
pn.Row(responsive.controls(jslink=True), responsive)