Installez les bibliothèques 🤗 Transformers et 🤗 Gradio pour exécuter ce notebook.
!pip install datasets transformers[sentencepiece]
!pip install gradio
import random
import gradio as gr
def chat(message, history):
history = history or []
if message.startswith("Combien"):
response = random.randint(1, 10)
elif message.startswith("Comment"):
response = random.choice(["Super", "Bon", "Ok", "Mal"])
elif message.startswith("Où"):
response = random.choice(["Ici", "Là", "Quelque part"])
else:
response = "Je ne sais pas."
history.append((message, response))
return history, history
iface = gr.Interface(
chat,
["text", "state"],
["chatbot", "state"],
allow_screenshot=False,
allow_flagging="never",
)
iface.launch()
import requests
import tensorflow as tf
import gradio as gr
inception_net = tf.keras.applications.MobileNetV2() # charger le modèle
# Télécharger des étiquettes lisibles par l'homme pour ImageNet
response = requests.get("https://git.io/JJkYN")
labels = response.text.split("\n")
def classify_image(inp):
inp = inp.reshape((-1, 224, 224, 3))
inp = tf.keras.applications.mobilenet_v2.preprocess_input(inp)
prediction = inception_net.predict(inp).flatten()
return {labels[i]: float(prediction[i]) for i in range(1000)}
image = gr.Image(shape=(224, 224))
label = gr.Label(num_top_classes=3)
title = "Classification des images avec Gradio + Exemple d'interprétation"
gr.Interface(
fn=classify_image, inputs=image, outputs=label, interpretation="default", title=title
).launch()