This notebook regroups the code sample of the video below, which is a part of the Hugging Face course.
#@title
from IPython.display import HTML
HTML('<iframe width="560" height="315" src="https://www.youtube.com/embed/tfcY1067A5Q?rel=0&controls=0&showinfo=0" frameborder="0" allowfullscreen></iframe>')
Install the Transformers and Datasets libraries to run this notebook.
! pip install datasets transformers[sentencepiece]
from datasets import load_dataset
dataset = load_dataset("swiss_judgment_prediction", "all_languages", split="train")
dataset[0]
# Convert the output format to pandas.DataFrame
dataset.set_format("pandas")
dataset[0]
dataset.__getitem__(0)
dataset.set_format("pandas")
dataset.__getitem__(0)
df = dataset.to_pandas()
df.head()
# How are languages distributed across regions?
df.groupby("region")["language"].value_counts()
# Which legal area is most common?
df["legal area"].value_counts()
from transformers import AutoTokenizer
# Load a pretrained tokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
# Tokenize the `text` column
dataset.map(lambda x : tokenizer(x["text"]))
# Reset back to Arrow format
dataset.reset_format()
# Now we can tokenize!
dataset.map(lambda x : tokenizer(x["text"]))